【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志為連續(xù)天,每天新增疑似病例不超過.過去日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下,則一定符合該標(biāo)志的是(

甲地:總體平均數(shù),且中位數(shù)為

乙地:總體平均數(shù)為,且標(biāo)準(zhǔn)差

丙地:總體平均數(shù),且極差;

丁地:眾數(shù)為,且極差

A.甲地B.乙地C.丙地D.丁地

【答案】CD

【解析】

根據(jù)條件,舉例說明甲地和乙地,根據(jù)極差的概念,說明每天新增疑似病例的最大值,判斷丙地和丁地.

甲地:滿足總體平均數(shù),且中位數(shù)為,舉例7天的新增疑似病例為0,0,00,56,7,則不符合該標(biāo)志;

乙地:若7天新增疑似病例為1,1,1,12,2,6,滿足平均數(shù)為2,標(biāo)準(zhǔn)差,

但不符合該標(biāo)志;

丙地:由極差可知,若新增疑似病例最多超過5人,比如6人,那么最小值不低于4人,

那么總體平均數(shù)就不正確,故每天新增疑似病例低于5人,故丙地符合該標(biāo)志;

丁地:因?yàn)楸姅?shù)為1,且極差,所以新增疑似病例的最大值,所以丁地符合該標(biāo)志.

故選:CD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)求當(dāng)時(shí), 恒成立的的取值范圍,并證明

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法正確的是( )

A. “弦”米,“矢”

B. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積()平方米

C. 按照弓形的面積計(jì)算實(shí)際面積為()平方米

D. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積比實(shí)際面積少算了大約0.9平方米(參考數(shù)據(jù) )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幼兒園雛鷹班的生活老師統(tǒng)計(jì)2018年上半年每個(gè)月的20日的晝夜溫差和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:

溫差

患感冒人數(shù)

8

11

14

20

23

26

其中,,.

(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合的關(guān)系;

(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測當(dāng)晝夜溫差升高時(shí)患感冒的小朋友的人數(shù)會(huì)有什么變化?(人數(shù)精確到整數(shù))

參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中),(其中為自然對數(shù)的底數(shù)).

(1)若曲線處的切線與直線垂直,求的單調(diào)區(qū)間和極值;

(2)若對任意,總存在使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)上是增函數(shù),求正數(shù)的取值范圍;

(2)當(dāng)時(shí),設(shè)函數(shù)的圖象與x軸的交點(diǎn)為,,曲線,兩點(diǎn)處的切線斜率分別為,求證:+ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知4名學(xué)生和2名教師站在一排照相,求:

(1)中間二個(gè)位置排教師,有多少種排法?

(2)首尾不排教師,有多少種排法?

(3)兩名教師不站在兩端,且必須相鄰,有多少種排法?

(4)兩名教師不能相鄰的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是合情推理的是(  )

①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);

②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是歸納出所有三角形的內(nèi)角和都是;③由,滿足,,推出是奇函數(shù);

④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.

A. ①②B. ①③④C. ②④D. ①②④

查看答案和解析>>

同步練習(xí)冊答案