考點(diǎn):對(duì)數(shù)函數(shù)的定義域,對(duì)數(shù)函數(shù)的值域與最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)y的解析式,求出使解析式有意義的自變量x的取值范圍,即得定義域;
函數(shù)y在[-5,-3]上是減函數(shù),當(dāng)x=-3時(shí)函數(shù)y取得最小值,求出即可.
解答:
解:∵函數(shù)y=log2(x2-2x-3),
∴x2-2x-3>0,
即(x+1)(x-3)>0,
解得x<-1或x>3,
∴函數(shù)y的定義域是(-∞,-1)∪(3,+∞);
在[-5,-3]上函數(shù)y=log2(x2-2x-3)是減函數(shù),
當(dāng)x=-3時(shí)函數(shù)y取得最小值,是
ymin=log2((-3)2-2×(-3)-3)=log212=2+log23.
故答案為:(-∞,-1)∪(3,+∞),2+log23.
點(diǎn)評(píng):本題考查了求函數(shù)的定義域以及利用函數(shù)的單調(diào)性求最值的問(wèn)題,是基礎(chǔ)題目.