2.若sinα=$\frac{4}{5}$,則sin(α+$\frac{π}{4}}$)-$\frac{{\sqrt{2}}}{2}$cosα等于( 。
A.$\frac{{2\sqrt{2}}}{5}$B.$-\frac{{2\sqrt{2}}}{5}$C.$\frac{{4\sqrt{2}}}{5}$D.$-\frac{{4\sqrt{2}}}{5}$

分析 根據(jù)條件利用兩角和的正弦公式,求得要求式子的值.

解答 解:∵sinα=$\frac{4}{5}$,則sin(α+$\frac{π}{4}}$)-$\frac{{\sqrt{2}}}{2}$cosα=$\frac{\sqrt{2}}{2}$sinα+$\frac{\sqrt{2}}{2}$cosα-$\frac{\sqrt{2}}{2}$cosα=$\frac{\sqrt{2}}{2}$sinα=$\frac{\sqrt{2}}{2}•\frac{4}{5}$=$\frac{2\sqrt{2}}{5}$,
故選:A.

點(diǎn)評(píng) 本題主要考查兩角和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.用反證法證明命題“a、b∈R,若a2+b2=0,則a=b=0”,其假設(shè)正確的是 (  )
A.a、b至少有一個(gè)不為0B.a、b至少有一個(gè)為0
C.a、b全不為0D.a、b中只有一個(gè)為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.(1-x)7的二項(xiàng)展開式中,x的系數(shù)與x3的二項(xiàng)式系數(shù)之和等于28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x+2016)=$\frac{{{x^2}+1}}{2x}$(x>0),則函數(shù)f(x)的最小值是( 。
A.2B.2016C.-2015D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=x2+bx,若函數(shù)y=f(f(x))的最小值與函數(shù)y=f(x)的最小值相等,則實(shí)數(shù)b的取值范圍是{b|b≥2或b≤0}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知x∈R,符號(hào)[x]表示不超過(guò)x的最大整數(shù),若函數(shù)f(x)=$\frac{[x]}{x}$-a(x≠0)有且僅有2個(gè)零點(diǎn),則a的取值范圍是($\frac{2}{3}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓C:(x-3)2+(y-4)2=4.
(1)若直線l1過(guò)定圓心C,且平行于直線x-2y+3=0,求直線l1的方程;
(2)若圓D半徑是3,圓心在直線l2:x+y-2=0上,且圓與C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(m,4),$\overrightarrow$=(3,-2),且$\overrightarrow{a}$∥$\overrightarrow$,則m=(  )
A.6B.-6C.$\frac{8}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)集合U={(x,y)|y=3x-4},A={(x,y)|$\frac{y-2}{x-2}$=3},則∁UA={(2,2)}.

查看答案和解析>>

同步練習(xí)冊(cè)答案