對(duì)于函數(shù)f(x)=
1
x
-x+t(t∈R),給出下列判斷
①當(dāng)t=0時(shí),函數(shù)f(x)為奇函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,t)對(duì)稱(chēng);
③當(dāng)t=1,x∈[1,+∞)時(shí),函數(shù)f(x)的最小值為1.
其中正確的判斷是(  )
A、①②B、①③C、②③D、①②③
考點(diǎn):命題的真假判斷與應(yīng)用
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:求出定義域,判斷是否關(guān)于原點(diǎn)對(duì)稱(chēng),再計(jì)算f(-x),與f(x)比較即可判斷①;
運(yùn)用f(a+x)+f(a-x)=2b,則f(x)關(guān)于點(diǎn)(a,b)對(duì)稱(chēng),即可判斷②;
運(yùn)用導(dǎo)數(shù)判斷函數(shù)f(x)的單調(diào)性,再由單調(diào)性即可得到最值,即可判斷③.
解答: 解:對(duì)于①,當(dāng)t=0時(shí),函數(shù)f(x)=
1
x
-x+t=
1
x
-x,定義域?yàn)閧x|x≠0}關(guān)于原點(diǎn)對(duì)稱(chēng),
f(-x)=-
1
x
+x=-f(x),則f(x)為奇函數(shù),則①對(duì);
對(duì)于②,由于f(-x)+f(x)=-
1
x
+x+t+
1
x
-x+t=2t,則函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,t)對(duì)稱(chēng),則②對(duì);
對(duì)于③,當(dāng)t=1時(shí),f(x)=
1
x
-x+1,f′(x)=-
1
x2
-1<0,則f(x)在[1,+∞)遞減,
則f(1)為最大值,且為1.則③錯(cuò).
綜上可得,正確的有①②.
故選A.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性和單調(diào)性及對(duì)稱(chēng)性的判斷和運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={-1,1},B={x|ax=1},若B⊆A,則a的取值集合為( 。
A、{1}
B、{-1}
C、{-1,1}
D、{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=[(2+a)x-1][(2-a)x-1],其中a≥0.
(1)解關(guān)于x的不等式f(x)<0;
(2)若關(guān)于x的不等式f(x)<0只有三個(gè)整數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x>0
3-x
3+x
>|
2-x
2+x
|
 的解集是( 。
A、(0,2)
B、(0,2.5)
C、(0,
6
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿(mǎn)足
x+y>2
x-y≤2
0≤y≤3
,則z=2x-y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=a1-x(a>0且a≠1)的圖象恒過(guò)點(diǎn)A.若點(diǎn)A在直線(xiàn)mx+ny-1=0(mn>0)上,則
1
m
+
2
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)A(2,-3),B(-2,-5)兩點(diǎn),且圓心在直線(xiàn)x-2y-3=0上的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=1,b=
3
,c=2,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

{an}是等差數(shù)列,a1與a2的等差中項(xiàng)為1,a2與a3的等差中項(xiàng)為2,則公差d=(  )
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案