已知函數(shù)f(x)=(x2-3x+3)ex,其定義域?yàn)閇-2,t](t>-2),
(1)當(dāng)t=2時(shí)時(shí),求函數(shù)f(x)的極大值;
(2)求證:對于任意的t>-2,總存在x0∈(-2,t),滿足
f′(x0)
ex0
=
2
3
(t-1)2
,并確定這樣的x0的個(gè)數(shù).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可求函數(shù)f(x)的極大值;
(2)首先對關(guān)系式進(jìn)行化簡,然后利用根與系數(shù)的關(guān)系進(jìn)行判定,分類討論確定x0的個(gè)數(shù).
解答: 解:f'(x)=(2x-3)ex+(x2-3x+3)ex=(x2-x)ex----1-分
(1)由f'(x)=(x2-x)ex=0得x=0,或x=1-----(2分)
當(dāng)x變化時(shí),f'(x)、f(x)的變化情況如下表
x(-2,0)0(0,1)1(1,2)
f'(x)+0-0+
f(x)極大值極小值
f(x)的極大值為f(0)=3.-----(4分)
(2)
f′(x0)
ex0
=
x
2
0
-x0
,所以
x
2
0
-x0=
2
3
(t-1)2
-----(5分)
設(shè)g(x)=x2-x-
2
3
(t-1)2
,
g(-2)=6-
2
3
(t-1)2=-
2
3
(t+2)(t-4)
-----(6分)
g(t)=t(t-1)-
2
3
(t-1)2=
1
3
(t+2)(t-1)
-----(7分)
當(dāng)t>4,或-2<t<1時(shí),g(-2)•g(t)<0,所以g(x)=0在(-2,t)上有解,且只有一解;-----(9分)
當(dāng)1<t<4時(shí),g(-2)>0且g(t)>0,而g(0)=-
2
3
(t-1)2<0

所以g(x)=0在(-2,t)上有解,且有兩解;-----(11分)
當(dāng)t=1或t=4時(shí),g(x)=0在(-2,t)上有解,且只有一解;-----(13分)
綜上所述,對于任意的t>-2,總存在x0∈(-2,t),滿足
f′(x0)
ex0
=
2
3
(t-1)2
,
當(dāng)t≥4或-2<t≤1時(shí),有唯一的x0適合題意,當(dāng)1<t<4時(shí),有兩個(gè)x0適合題意-----(14分)
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、根的存在性及根的個(gè)數(shù)判斷,綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex(ax2+x+1),且曲線y=f(x)在x=1處的切線與x軸平行.
(Ⅰ)求a的值,并討論f(x)的單調(diào)性;
(Ⅱ)證明:對任意x1,x2∈[0,1],有|f(x1)-f(x2)|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:(a-2)x-
1
x
<a-3(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
(1)若函數(shù)f(x)的圖象在x=2處的切線方程為y=7x-20,求a、b的值;
(2)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),且|x1|+|x2|=2,求證:|b|≤
4
3
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(Ⅰ)求h(x)=f(x)-3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)F(x)=2f(x)-3x2-k,k∈R,若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且滿足2x0=m+n,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-x-
a
x
,a∈R.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極大值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a>1時(shí),設(shè)函數(shù)g(x)=|f(x-1)+x-1+
a
x-1
|,若實(shí)數(shù)b滿足:b>a且g(
b
b-1
)=g(a),g(b)=2g(
a+b
2
),求證:4<b<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,函數(shù)f(x)=
e-x
2
(ax2+a+1).
(Ⅰ)當(dāng)a=-1時(shí),求f(x)在[-1,2]上的最值;
(Ⅱ)求證:當(dāng)a≥0時(shí),f(x)在R上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},B⊆A,求實(shí)數(shù)a的取值范圍組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用列舉法表示集合A={x|
2
x+1
∈Z,x∈Z}=
 

查看答案和解析>>

同步練習(xí)冊答案