6.某幾何體的三視圖如圖所示,正視圖與側視圖完全相同,則該幾何體的體積為(  )
A.$\frac{192-8π}{3}$B.$16+16\sqrt{5}+4(\sqrt{2}-1)π$C.$\frac{56π}{3}$D.$\frac{64-8π}{3}$

分析 由三視圖可知:該幾何體是一個四棱錐,挖去一個圓錐所得的組合體,分別計算四棱錐和圓錐的體積,相減可得答案

解答 解:由三視圖可知:該幾何體是一個正四棱錐,挖去一個圓錐所得的組合體,
四棱錐的體積為$\frac{1}{3}×4×4×4$=$\frac{64}{3}$,
圓錐的體積為:$\frac{1}{3}π×{2}^{2}×2$=$\frac{8π}{3}$,
故組合體的體積$\frac{64-8π}{3}$
故選:D.

點評 本題考查的知識點是由三視圖求幾何體的體積和表面積,解決本題的關鍵是得到該幾何體的形狀.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,短軸一個端點到右焦點的距離為$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設直線l:y=x+$\sqrt{2}$與橢圓C交于A,B兩點,其中O坐標原點,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.欲將方程$\frac{x^2}{4}$+$\frac{y^2}{3}$=1所對應的圖形變成方程x2+y2=1所對應的圖形,需經(jīng)過伸縮變換φ為( 。
A.$\left\{\begin{array}{l}x'=2x\\ y'=\sqrt{3}y\end{array}\right.$B.$\left\{\begin{array}{l}x'=\frac{1}{2}x\\ y'=\frac{{\sqrt{3}}}{3}y\end{array}\right.$C.$\left\{\begin{array}{l}x'=4x\\ y'=3y\end{array}\right.$D.$\left\{\begin{array}{l}{x′=\frac{1}{4}x}\\{y′=\frac{1}{3}y}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.甲、乙同時炮擊一架敵機,已知甲擊中敵機的概率為0.6,乙擊中敵機的概率為0.4,敵機被擊中的概率為0.76.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知cos(α-$\frac{2π}{7}$)=-$\frac{\sqrt{7}}{4}$,且α∈(-$\frac{π}{2}$,0),則sin(α+$\frac{5π}{7}$)等于( 。
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,在正方形OABC內(nèi),陰影部分是由兩曲線y=$\sqrt{x}$,y=x2(0≤x≤1)圍成,在正方形內(nèi)隨機取一點,且此點取自陰影部分的概率是a,則函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x≥a)}\\{(\frac{1}{3})^{x}(x<a)}\end{array}\right.$的值域為[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)的圖象關于點(-$\frac{3}{4}$,0)對稱,且滿足f(x)=-f(x+$\frac{3}{2}}$),又f(-1)=1,f(0)=-2,則f(1)+f(2)+f(3)+…+f(2008)=( 。
A.669B.670C.2008D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+ax+3.
(1)當a=-4 時,解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知一等差數(shù)列的前三項和為94,后三項和為116,各項和為280,則此數(shù)列的項數(shù)n為( 。
A.5B.6C.7D.8

查看答案和解析>>

同步練習冊答案