【題目】在等差數(shù)列{an}中,a2+a7=﹣23,a3+a8=﹣29
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{an+bn}是首項為1,公比為2的等比數(shù)列,求{bn}的前n項和Sn .
【答案】
(1)解:設等差數(shù)列{an}的公差是d.
由已知(a3+a8)﹣(a2+a7)=2d=﹣6,
∴d=﹣3,
∴a2+a7=2a1+7d=﹣23m,
得 a1=﹣1,
∴數(shù)列{an}的通項公式為an=﹣3n+2
(2)解:由數(shù)列{an+bn}是首項為1,公比為2的等比數(shù)列,
∴ ,
∴ =3n﹣2+2n﹣1,
∴Sn=[1+4+7+…+(3n﹣2)]+(1+2+22+…+2n﹣1)
= ,
=
【解析】(1)依題意 a3+a8﹣(a2+a7)=2d=﹣6,從而d=﹣3.由此能求出數(shù)列{an}的通項公式.(2)由數(shù)列{an+bn}是首項為1,公比為2的等比數(shù)列,求出 =3n﹣2+2n﹣1,再分組求和即可
【考點精析】通過靈活運用等差數(shù)列的通項公式(及其變式)和數(shù)列的前n項和,掌握通項公式:或;數(shù)列{an}的前n項和sn與通項an的關系即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的五面體中,面ABCD為直角梯形,∠BAD=∠ADC= ,平面ADE⊥平面ABCD,EF=2DC=4AB=4,△ADE是邊長為2的正三角形.
(Ⅰ)證明:BE⊥平面ACF;
(Ⅱ)求二面角A﹣BC﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在區(qū)間[0,1]內隨機取兩個數(shù)分別為a,b,則使得方程x2+2ax+b2=0有實根的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 ( )上的值域為[﹣1,2],則θ= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l: (t為參數(shù)),曲線C1: (θ為參數(shù)). (Ⅰ)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的 倍,縱坐標壓縮為原來的 倍,得到曲線C2 , 設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北宋數(shù)學家沈括的主要數(shù)學成就之一為隙積術,所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長方臺形狀的物體垛積.設隙積共n層,上底由長為a個物體,寬為b個物體組成,以下各層的長、寬依次各增加一個物體,最下層成為長為c個物體,寬為d個物體組成,沈括給出求隙積中物體總數(shù)的公式為S= .已知由若干個相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F為拋物線C:x2=2py(p>0)的焦點,過F的直線l與C交于A,B兩點,M為AB中點,點M到x軸的距離為d,|AB|=2d+1.
(1)求p的值;
(2)過A,B分別作C的兩條切線l1 , l2 , l1∩l2=N.請選擇x,y軸中的一條,比較M,N到該軸的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com