【題目】北宋數(shù)學(xué)家沈括的主要數(shù)學(xué)成就之一為隙積術(shù),所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長(zhǎng)方臺(tái)形狀的物體垛積.設(shè)隙積共n層,上底由長(zhǎng)為a個(gè)物體,寬為b個(gè)物體組成,以下各層的長(zhǎng)、寬依次各增加一個(gè)物體,最下層成為長(zhǎng)為c個(gè)物體,寬為d個(gè)物體組成,沈括給出求隙積中物體總數(shù)的公式為S= .已知由若干個(gè)相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個(gè)數(shù)為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣sin2x+ ,x∈(0,π).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC為銳角三角形,角A所對(duì)邊a= ,角B所對(duì)邊b=5,若f(A)=0,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且 + = .
(1)求b的值;
(2)若cosB+ sinB=2,求a+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列{an}中,a2+a7=﹣23,a3+a8=﹣29
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an+bn}是首項(xiàng)為1,公比為2的等比數(shù)列,求{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)D為不等式組 ,表示的平面區(qū)域,點(diǎn)B(a,b)為第一象限內(nèi)一點(diǎn),若對(duì)于區(qū)域D內(nèi)的任一點(diǎn)A(x,y)都有 成立,則a+b的最大值等于( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1中,側(cè)面AA1B1B為菱形,底面△ABC是等腰直角三角形,∠BAC=90°,A1B⊥B1C.
(1)求證:直線AC⊥直線BB1;
(2)若直線BB1與底面ABC成的角為60°,求二面角A﹣BB1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin2ωx﹣ (ω>0)的周期為 ,若將其圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)a的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,則k的取值范圍是( )
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com