已知函數(shù)f(x)=ex+ax,g(x)=exlnx.(其中e為自然對數(shù)的底數(shù)),
(Ⅰ)設(shè)曲線y=f(x)在x=1處的切線與直線x+(e-1)y=1垂直,求a的值;
(Ⅱ)若對于任意實數(shù)x≥0,f(x)>0恒成立,試確定實數(shù)a的取值范圍;
(Ⅲ)當a=-1時,是否存在實數(shù)x∈[1,,e],使曲線C:y=g(x)-f(x)在點x=x
處的切線與y軸垂直?若存在,求出x的值;若不存在,請說明理由.
【答案】分析:(I)據(jù)導數(shù)的幾何意義求出函數(shù)f(x)在x=1處的導數(shù),從而求出切線的斜率,再根據(jù)兩直線垂直建立等式關(guān)系,解之即可.
(II)當x=0時,顯然f(x)=ex>0恒成立;當x大于0時,令f(x)大于0,解出a大于一個函數(shù),設(shè)這個函數(shù)為Q(x),求出Q(x)的導函數(shù),分x大于0小于1和x大于1兩種情況討論導函數(shù)的正負,進而得到函數(shù)的增減性,根據(jù)函數(shù)的增減性得到Q(x)的最大值,即可得到a的取值范圍;
(III)把f(x)和g(x)的解析式代入y中確定出y的解析式,設(shè)M(x)為y的解析式,求出M(x)的導函數(shù),h(x)=+lnx-1,求出h(x)的導函數(shù),由x的范圍得到導函數(shù)為正數(shù),進而得到h(x)在[1,e]上為增函數(shù),得到h(1)為最小值,即可得到M(x)的最小值,而曲線C:y=g(x)-f(x)在點x=x處的切線與y軸垂直,即切線的斜率為0,即導函數(shù)的值為0,與導函數(shù)的最小值為1矛盾,所以不存在實數(shù)x∈[1,e],使曲線C:y=g(x)-f(x)在點x=x處的切線與y軸垂直.
解答:解:(Ⅰ)f'(x)=ex+a,(1分)
因此y=f(x)在(1,f(1))處的切線l的斜率為e+a,(2分)
又直線x+(e-1)y=1的斜率為,(3分)
∴(e+a)=-1,
∴a=-1.(5分)
(Ⅱ)∵當x≥0時,f(x)=ex+ax>0恒成立,
∴先考慮x=0,此時,f(x)=ex,a可為任意實數(shù);(6分)
又當x>0時,f(x)=ex+ax>0恒成立,
恒成立,(7分)
設(shè)h(x)=,則h'(x)=,
當x∈(0,1)時,h'(x)>0,h(x)在(0,1)上單調(diào)遞增,
當x∈(1,+∞)時,h'(x)<0,h(x)在(1,+∞)上單調(diào)遞減,
故當x=1時,h(x)取得極大值,h(x)max=h(1)=-e,(9分)
∴要使x≥0,f(x)>0恒成立,a>-e,
∴實數(shù)a的取值范圍為(-e,+∞).(10分)
(Ⅲ)依題意,曲線C的方程為y=exlnx-ex+x,
令u(x)=exlnx-ex+x,則=
設(shè),則,
當x∈[1,e],v'(x)≥0,故v(x)在[1,e]上的最小值為v(1)=0,(12分)
所以v(x)≥0,又ex>0,∴>0,
而若曲線C:y=g(x)-f(x)在點x=x處的切線與y軸垂直,
則u'(x)=0,矛盾.(13分)
所以,不存在實數(shù)x∈[1,e],使曲線C:y=g(x)-f(x)在點x=x處的切線與y軸垂直.
點評:此題考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,掌握兩條直線垂直的判定,掌握導數(shù)在最大值、最小值中的運用,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數(shù)x從小到大排成數(shù)列{xn}.求證:數(shù)列{f(xn)}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•西城區(qū)二模)已知函數(shù)f(x)=e|x|+|x|.若關(guān)于x的方程f(x)=k有兩個不同的實根,則實數(shù)k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)已知函數(shù)f(x)=e|lnx|-|x-
1
x
|,則函數(shù)y=f(x+1)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-x(x2+x+1).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案