【題目】數(shù)列滿足,且.

1)求、、;

2)求數(shù)列的通項(xiàng)公式;

3)令,求數(shù)列的最大值與最小值.

【答案】1,;(2;(3)數(shù)列的最大值為,最小值為.

【解析】

1)由題設(shè)條件,分別令、可計(jì)算出、的值;

2)令,由可得出,兩式作差可得出,再利用等比數(shù)列的通項(xiàng)公式即可得出數(shù)列的通項(xiàng)公式;

3)先求出數(shù)列的通項(xiàng)公式,分兩種情況討論,利用數(shù)列的單調(diào)性即可求出數(shù)列的最大值與最小值.

1數(shù)列滿足,且,

當(dāng)時(shí),則有,解得;

當(dāng)時(shí),則有,解得;

當(dāng)時(shí),則有,解得

2)當(dāng)時(shí),由可得出,

兩式相減得,,,且

所以,數(shù)列從第二項(xiàng)起成等比數(shù)列,又,所以;

3,

當(dāng)時(shí),.

當(dāng)時(shí),,此時(shí),數(shù)列單調(diào)遞減,且;

當(dāng)時(shí),,此時(shí),數(shù)列單調(diào)遞減,且.

,因此,數(shù)列的最大值為,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,為棱上的點(diǎn),且

1)求證:平面;

2)求二面角的余弦值;

3)設(shè)為棱上的點(diǎn)(不與,重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將直線l沿x軸正方向平移3個(gè)單位長(zhǎng)度,沿y軸正方向平移5個(gè)單位長(zhǎng)度,得到直線l1.再將直線l1沿x軸正方向平移1個(gè)單位長(zhǎng)度,沿y軸負(fù)方向平移2個(gè)單位長(zhǎng)度,又與直線l重合.若直線l與直線l1關(guān)于點(diǎn)(2,3)對(duì)稱,則直線l的方程是________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在實(shí)數(shù)集上的偶函數(shù)和奇函數(shù)滿足

1)求的解析式;

2)求證:在區(qū)間上單調(diào)遞增;并求在區(qū)間的反函數(shù);

3)設(shè)(其中為常數(shù)),若對(duì)于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點(diǎn),當(dāng)∠F1MF2=90°時(shí),△F1MF2的面積為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)A是橢圓C上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線AF1,AF2分別與橢圓交于點(diǎn)B,D,設(shè)直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

Ⅰ)由題意可求得,則,橢圓的方程為.

Ⅱ)設(shè),,

當(dāng)直線的斜率不存在或直線的斜率不存在時(shí),.

當(dāng)直線的斜率存在時(shí),,設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理計(jì)算可得直線的斜率為直線的斜率為,.綜上可得:直線的斜率之積為定值.

Ⅰ)設(shè)由題,

解得,則,橢圓的方程為.

Ⅱ)設(shè),當(dāng)直線的斜率不存在時(shí),

設(shè),則,直線的方程為代入

可得 ,,則,

直線的斜率為,直線的斜率為,

當(dāng)直線的斜率不存在時(shí),同理可得.

當(dāng)直線、的斜率存在時(shí),設(shè)直線的方程為

則由消去可得:,

,則,代入上述方程可得:

,

,

設(shè)直線的方程為,同理可得 ,

直線的斜率為

直線的斜率為 .

所以,直線的斜率之積為定值,即.

【點(diǎn)睛】

(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.

(2)涉及到直線方程的設(shè)法時(shí),務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.

型】解答
結(jié)束】
21

【題目】已知函數(shù)f(x)=(x+b)(-a),(b>0),在(-1,f(-1))處的切線方程為(e-1)x+ey+e-1=0.

(Ⅰ)求a,b;

(Ⅱ)若方程f(x)=m有兩個(gè)實(shí)數(shù)根x1,x2,且x1<x2,證明:x2-x1≤1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,前項(xiàng)和為,且.

1)求,的值;

2)證明:數(shù)列是等差數(shù)列,并寫出其通項(xiàng)公式;

3)設(shè)),試問是否存在正整數(shù)(其中,使得,,成等比數(shù)列?若存在,求出所有滿足條件的數(shù)對(duì);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)點(diǎn)在橢圓的圖像上運(yùn)動(dòng)時(shí),點(diǎn)在曲線上運(yùn)動(dòng),求曲線的軌跡方程,并指出該曲線是什么圖形;

3)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)作曲線的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線軸,軸上的截距分別為試問:是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)是橢圓的一個(gè)頂點(diǎn),是等腰直角三角形.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上一動(dòng)點(diǎn),求線段的中點(diǎn)的軌跡方程;

3)過點(diǎn)分別作直線,交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,

,探究:直線是否過定點(diǎn),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案