1.?dāng)?shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前60項(xiàng)和為1830.

分析 由題意可得 a2-a1=1,a3+a2=3,a4-a3=5,a5+a4=7,a6-a5=9,a7+a6=11,…a50-a49=97,變形可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用數(shù)列的結(jié)構(gòu)特征,求出{an}的前60項(xiàng)和.

解答 解:∵an+1+(-1)n an=2n-1,
故有 a2-a1=1,a3+a2=3,a4-a3=5,a5+a4=7,a6-a5=9,a7+a6=11,…a50-a49=97.
從而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…
從第一項(xiàng)開始,依次取2個(gè)相鄰奇數(shù)項(xiàng)的和都等于2,從第二項(xiàng)開始,依次取2個(gè)相鄰偶數(shù)項(xiàng)的和構(gòu)成以8為首項(xiàng),以16為公差的等差數(shù)列.
{an}的前60項(xiàng)和為 15×2+(15×8+$\frac{15×14}{2}$×16)=1830
故答案為:1830

點(diǎn)評 本題主要考查數(shù)列求和的方法,等差數(shù)列的求和公式,注意利用數(shù)列的結(jié)構(gòu)特征,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z滿足z=i2017,則z的共軛復(fù)數(shù)$\overline{z}$的虛部是( 。
A.-1B.1C.0D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為矩形,M是AD上一點(diǎn).
(1)求證:AB⊥PM;
(2)若N是PB的中點(diǎn),且AN∥平面PCM,求$\frac{AM}{AD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)y=ax,x∈(-∞,1]的值域?yàn)椋?,2),則a的值為(  )
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\frac{x}{lnx}$的遞減區(qū)間是( 。
A.(0,e)B.(e,∞)C.(1,e)D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=$\frac{1}{2}$,Sn=n2an,求其通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$f(x)=\frac{{\sqrt{x+1}}}{x-2}$的定義域?yàn)閇-1,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正方形ABCD-A1B1C1D1中,直線A1D與BC1的夾角為( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$y=2sin(4x-\frac{π}{6})+1$的最小正周期為( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

同步練習(xí)冊答案