分析 (1)由2Sn=(n+1)an,得2Sn-1=nan-1,(n≥2),兩式相減得2an=(n+1)an-nan-1,即{$\frac{{a}_{n}}{n}$}是一個(gè)常數(shù)列,且$\frac{{a}_{1}}{1}$=1,問(wèn)題得以解決,
(2)先求出Sn=$\frac{n(n+1)}{2}$,再裂項(xiàng)$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),即可求前n項(xiàng)和.
解答 解:(1)由2Sn=(n+1)an,得2Sn-1=nan-1,(n≥2),
兩式相減得2an=(n+1)an-nan-1,
∴(n-1)an=nan-1,(n≥2),
∴$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,
∴{$\frac{{a}_{n}}{n}$}是一個(gè)常數(shù)列,且$\frac{{a}_{1}}{1}$=1,
∴an=n,(n∈N*),
(2)∵Sn=1+2+3+…+n=$\frac{n(n+1)}{2}$,
∴$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和為2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$
點(diǎn)評(píng) 本題考查了遞推公式求出數(shù)列的通項(xiàng)公式和裂項(xiàng)法求前n項(xiàng)和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{9}{4}$ | C. | 3 | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0” | |
B. | 若a∈R,則“a=2”是“(a-1)(a-2)=0”的充分且不必要條件 | |
C. | 對(duì)于命題p:?x0∈R,使得x02+x0+1<0,則¬p:?x∈R,則x2+x+1≥0 | |
D. | 命題“若am2<bm2,則a<b”的逆命題是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{100}{101}$ | B. | $\frac{99}{100}$ | C. | $\frac{101}{100}$ | D. | $\frac{200}{101}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [4,+∞) | B. | [2,+∞) | C. | [4,8] | D. | [2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 7 | C. | 1 | D. | -7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com