分析 利用基本不等式的性質(zhì)可得P的坐標,再利用直線與圓相切的性質(zhì)、勾股定理即可得出.
解答 解:正數(shù)x,y滿足x+2y=3,∴3≥2$\sqrt{x•2y}$,可得:xy≤$\frac{9}{8}$,當且僅當x=2y=$\frac{3}{2}$時取等號.
當xy取得最大值時,點P$(\frac{3}{2},\frac{3}{4})$.
則切線段的長度為$\sqrt{(\frac{3}{2}-\frac{1}{2})^{2}+(\frac{3}{4}+\frac{1}{4})^{2}-\frac{1}{2}}$=$\frac{\sqrt{6}}{2}$.
故答案為:$\frac{\sqrt{6}}{2}$.
點評 本題考查了基本不等式的性質(zhì)可得P的坐標,再利用直線與圓相切的性質(zhì)、勾股定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 是等差數(shù)列但不是等比數(shù)列 | B. | 是等比數(shù)列但不是等差數(shù)列 | ||
C. | 既是等差數(shù)列又是等比數(shù)列 | D. | 既不是等差數(shù)列又不是等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$] | B. | (-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$] | C. | (-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$] | D. | (-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com