1.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,E是PC的中點.
(1)求證:PA∥平面BDE;
(2)求證:平面PDC⊥平面PAD.

分析 (1)由正方形的性質(zhì)結(jié)合題意證出EO為△PBD的中位線,從而得到EO∥PA,利用線面平行的判定定理,即可證出PA∥平面EBD;
(2)由PA⊥底面ABCD,底面ABCD是矩形,可得PA⊥CD及AD⊥CD,進(jìn)而由線面垂直的判定定理得到DC⊥平面PAD,進(jìn)而由面面垂直的判定定理得到平面PAD⊥平面PDC.

解答 證明:(1))連接AC,與BD交于O,連接EO,因為底面ABCD為正方形,得O是AC的中點,
因為E是PC的中點,所以O(shè)E是三角形PAC的中位線,得EO∥PA,
又EO?平面EDB,PA?平面EDB
∴PA∥平面EDB;
(2)∵PA⊥底面ABCD,CD?底面ABCD
∴PA⊥CD.                 
∵底面ABCD是矩形,AD⊥CD.    
又PA∩AD=A,AP?面PAD,AD?面PAD,
∴DC⊥平面PAD.     
∵DC?平面PDC,
∴平面PDC⊥平面PAD.

點評 本題在特殊的四棱錐中證明線面平行,平面與平面垂直的判定,解答的關(guān)鍵是證得DC⊥平面PAD,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}4-8|{x-\frac{3}{2}}|,1≤x≤2\\ \frac{1}{2}f(\frac{x}{2}),\;x>2.\end{array}$,則函數(shù)g(x)=xf(x)-6在區(qū)間[1,22015]內(nèi)的所有零點的和為$\frac{3}{2}$•(22015-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f'(x)為f(x)的導(dǎo)函數(shù),當(dāng)x≠0時,x•f'(x)<0恒成立,對于正數(shù)a,b有:A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),C=f($\frac{2ab}{a+b}$),則A、B、C的大小關(guān)系為(  )
A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{x}$+alnx-1,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對任意的x>0,f(x)≥0恒成立,求a的取值范圍;
(3)若a=1,定義函數(shù)g(x)=[f(x)-$\frac{1}{x}$]•ex+x(其中e為自然對數(shù)的底數(shù)),問曲線y=g(x)上是否在不同的兩點M,N,使得直線MN的斜率等于1?若存在,求出符合條件的一條直線MN的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線C1:$\left\{\begin{array}{l}x=1+\frac{4}{5}t\\ y=1-\frac{3}{5}t\end{array}\right.$(t為參數(shù)),曲線C2:ρ=4cosθ
(1)將C1與C2化成普通方程與直角坐標(biāo)方程;
(2)求直線C1被曲線C2所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,直線C1的極坐標(biāo)方程是ρsinθ+ρcosθ-1=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α是參數(shù)).
(1)求直線C1和圓C2的交點的極坐標(biāo);
(2)若直線l經(jīng)過直線C1和圓C2交點的中點,且垂直于直線C1,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|-|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個不同的解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\underset{lim}{n→∞}$(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)…(1+$\frac{1}{{2}^{{2}^{n}}}$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.矩形ABCD中,AB=2,AD=1,P為矩形內(nèi)部一點,且AP=1.若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ∈R),則2λ+$\sqrt{3}$μ的最大值是2.

查看答案和解析>>

同步練習(xí)冊答案