13.已知函數(shù)f(x)=|x+1|-|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個不同的解,求實數(shù)a的取值范圍.

分析 (1)若a=0,求得函數(shù)f(x)的解析式,根據(jù)解析式分別求得f(x)≥0的解集;
(2)u(x)=|x+1|-|x|,做出y=u(x)和y=x的圖象,方程f(x)=x恰有三個不同的實根,轉(zhuǎn)化成y=u(x)與y=x的圖象始終有3個交點,根據(jù)函數(shù)圖象即可求得實數(shù)a的取值范圍.

解答 解:(1)當a=0時,$f(x)=|{x+1}|-|x|=\left\{{\begin{array}{l}{-1,x<-1}\\{2x+1,-1≤x<0}\\{1,x≥0}\end{array}}\right.$,
所以當x<-1時,f(x)=-1<0,不合題意;
當-1≤x<0時,f(x)=2x+1≥0,解得$-\frac{1}{2}≤x<0$;
當x≥0時,f(x)=1>0,符合題意.
綜上可得,f(x)≥0的解集為$[-\frac{1}{2},+∞)$.
(2)設(shè)u(x)=|x+1|-|x|,y=u(x)的圖象和y=x的圖象如圖所示.

易知y=u(x)的圖象向下平移1個單位以內(nèi)(不包括1個單位),與y=x的圖象始終有3個交點,
從而-1<a<0.
所以實數(shù)a的取值范圍為(-1,0).

點評 本題主要考查絕對值不等式求解,函數(shù)與方程的應(yīng)用,分段函數(shù)的圖象和性質(zhì),綜合性較強,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知f(x)為偶函數(shù),且滿足f(x)=f(-x+2),方程f(x)=0在[0,1]內(nèi)有且只有一個根$\frac{1}{2016}$,則方程f(x)=0在區(qū)間[-2016,2016]內(nèi)的根的個數(shù)為( 。
A.4032B.4036C.2016D.2018

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.直角坐標系中曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ為參數(shù)).
(1)求曲線C的直角坐標方程;
(2)經(jīng)過點M(2,2)作直線l交曲線C于A,B兩點,若M恰好為線段AB的中點,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,E是PC的中點.
(1)求證:PA∥平面BDE;
(2)求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若方程$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1有增根,則增根是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.解方程x2+$\frac{{x}^{2}}{(x+1)^{2}}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合M={x|x<-3或x>5},P={x|(x-a)(x-8)≤0}
(1)求實數(shù)a的取值范圍,使它成為M∩P={x|5<x≤8}的充要條件;
(2)求實數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件;
(3)求實數(shù)a的取值范圍,使它成為M∩P={x|5<x≤8}的一個必要但不充分條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,AB是圓O的直徑,CD是弦,CD⊥AB于點E,
(1)求證:△ACE∽△CBE;
(2)若AB=4,設(shè)OE=x(0<x<2),CE=y,請求出y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}a{x^2}$-2x,其中a≤0
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x+b,求a-2b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習冊答案