8.設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),且a1,22,a2,24,..,an,22n,…成等比數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記Sn為數(shù)列{an}的前n和,若Sk≥30(2k+1),整數(shù)k的最小值.

分析 (Ⅰ)根據(jù)題意,得出22,24,…,22n成等比數(shù)列,數(shù)列{an}是等比數(shù)列,求出首項(xiàng)與公比,寫出通項(xiàng)公式即可;
(Ⅱ)寫出數(shù)列{an}的前n和Sn,利用不等式Sk≥30(2k+1),求出不等式解集中整數(shù)k的最小值.

解答 解:(Ⅰ)∵數(shù)列{an}的各項(xiàng)均為正數(shù),且a1,22,a2,24,..,an,22n,…成等比數(shù)列;
∴22,24,…,22n也成等比數(shù)列,且公比為q2=$\frac{{2}^{4}}{{2}^{2}}$=4;
∴q=2,
∴a1=$\frac{{2}^{2}}{2}$=2;
∴數(shù)列{an}是首項(xiàng)為a1=2,公比為4的等比數(shù)列,
其通項(xiàng)公式為an=2•4n-1=22n-1;
(Ⅱ)∵Sn為數(shù)列{an}的前n和,
∴Sn=$\frac{{a}_{1}(1{-q}^{n})}{1-q}$=$\frac{2×(1{-4}^{n})}{1-4}$=$\frac{2}{3}$(4n-1)=$\frac{2}{3}$(22n-1),
又Sk≥30(2k+1),
即$\frac{2}{3}$(22k-1)≥30(2k+1),
化簡(jiǎn)得22k-45•2k-46≥0,
解得2k≥46或2k≤1(不合題意,舍去);
∴k≥6,
即整數(shù)k的最小值是6.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與前n和公式的應(yīng)用問題,也考查了不等式的解法與應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.考察下列等式:
cos$\frac{π}{4}$+isin$\frac{π}{4}$=a1+b1i,
(cos$\frac{π}{4}$+isin$\frac{π}{4}$)2=a2+b2i,
(cos$\frac{π}{4}$+isin$\frac{π}{4}$)3=a3+b3i,

(cos$\frac{π}{4}$+isin$\frac{π}{4}$)n=an+bni,
其中i為虛數(shù)單位,an,bn(n∈N*)均為實(shí)數(shù),由歸納可得,a2015+b2015的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合A={x|$\frac{x-2}{x+1}$<0},B={x|y=$\sqrt{1-{x}^{2}}$},則A∩B=( 。
A.{x|-1<x≤1}B.{x|-1<x<1}C.{x|-1≤x<1}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)$f(x)=x+\sqrt{2x-1}$的值域?yàn)閇$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=asinx+bcosx,其中a,b為非零實(shí)常數(shù).
(1)f($\frac{π}{4}$)=$\sqrt{2}$,f(x)的最大值為$\sqrt{10}$,求a,b的值;‘
(2)若a=1,x=$\frac{π}{6}$是f(x)的圖象的一條對(duì)稱軸,求x0的值,使其滿足f(x0)=$\sqrt{3}$,且x0∈[0,2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.直線y=x+m與橢圓$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1相交,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.?dāng)?shù)列{an}滿足:a1=2,an+1=an+λ•2n,且a1,a2+1,a3成等差數(shù)列,其中n∈N*
(1)求實(shí)數(shù)λ的值及數(shù)列{an}的通項(xiàng)公式;
(2)若不等式$\frac{p}{2n-5}$≤$\frac{16}{{a}_{n}}$成立的自然數(shù)n恰有3個(gè),求正整數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若角α的終邊上有一點(diǎn)P(-4b,3b)(b≠0),則sinα+cosα=$±\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=x2+2x+alnx在區(qū)間(0,1)內(nèi)無(wú)極值點(diǎn),則a的取值范圍是{a|a≤-4或a≥0}.

查看答案和解析>>

同步練習(xí)冊(cè)答案