分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)在同一坐標(biāo)系中畫(huà)出y=2sin(2x+$\frac{π}{6}$)和直線(xiàn)y=m(m∈R)的圖象,結(jié)合正弦函數(shù)的圖象的特征,數(shù)形結(jié)合求得實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.
解答 解:(1)由函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象,可得A=2,
根據(jù)$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{π}{6}$,求得ω=2.
再根據(jù)五點(diǎn)法作圖可得2×$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,f(x)=2sin(2x+$\frac{π}{6}$).
(2)如圖所示,在同一坐標(biāo)系中畫(huà)出y=2sin(2x+$\frac{π}{6}$)和直線(xiàn)y=m(m∈R)的圖象,
由圖可知,當(dāng)-2<m<0或$\sqrt{3}$<m<2時(shí),直線(xiàn)y=m與曲線(xiàn)有兩個(gè)不同的交點(diǎn),即原方程有兩個(gè)不同的實(shí)數(shù)根.
∴m的取值范圍為:-2<m<0或$\sqrt{3}$<m<2;
當(dāng)-2<m<0時(shí),兩根和為$\frac{4π}{3}$; 當(dāng)$\sqrt{3}$<m<2時(shí),兩根和為$\frac{π}{3}$.
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,正弦函數(shù)的圖象的特征,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,$\frac{π}{4}$) | B. | (1,$\frac{3π}{4}$) | C. | (1,$\frac{5π}{4}$) | D. | (1,$\frac{7π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | tanα=$\frac{4}{3}$ | B. | cosα=$\frac{3}{5}$ | C. | sinα=$\frac{4}{5}$ | D. | tanα=-$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平行于同一直線(xiàn)的兩個(gè)平面平行 | B. | 垂直于同一直線(xiàn)的兩個(gè)平面平行 | ||
C. | 平行于同一平面的兩條直線(xiàn)平行 | D. | 垂直于同一直線(xiàn)的兩條直線(xiàn)平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=3sin(2x-$\frac{π}{6}$)+1 | B. | f(x)=2sin(3x+$\frac{π}{3}$)+2 | C. | f(x)=2sin(3x-$\frac{π}{6}$)+2 | D. | f(x)=2sin(2x+$\frac{π}{6}$)+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com