12.(文)將函數(shù)y=2sin(2x+$\frac{π}{6}$)的圖象向右平移$\frac{1}{4}$個(gè)周期后,所得圖象對(duì)應(yīng)的函數(shù)為y=2sin(2x-$\frac{π}{3}$).

分析 平移$\frac{1}{4}$個(gè)周期,即平移$\frac{π}{4}$個(gè)單位,再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得所得圖象對(duì)應(yīng)的函數(shù)的解析式.

解答 解:由于函數(shù)y=2sin(2x+$\frac{π}{6}$)的周期為$\frac{2π}{2}$=π,故$\frac{1}{4}$個(gè)周期即$\frac{π}{4}$,
故把函數(shù)y=2sin(2x+$\frac{π}{6}$)的圖象向右平移$\frac{1}{4}$個(gè)周期,即把函數(shù)y=2sin(2x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{4}$個(gè)單位,
所得圖象對(duì)應(yīng)的函數(shù)的解析式為y=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{6}$]=2sin(2x-$\frac{π}{2}$+$\frac{π}{6}$)=2sin(2x-$\frac{π}{3}$),
故答案為:$y=2sin(2x-\frac{π}{3})$.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.正常情況下,年齡在18歲到38歲的人們,體重y(kg)依身高x(cm)的回歸方程為y=0.72x-58.5.張紅紅同學(xué)不胖不瘦,身高1米78,他的體重應(yīng)在70kg左右.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知關(guān)于x的不等式2x2-2mx+m<0的解集為A,其中m>0,若集合A中恰好有兩個(gè)整數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.($\frac{8}{3}$,$\frac{28}{5}$)B.($\frac{8}{3}$,$\frac{28}{5}$]C.($\frac{8}{3}$,$\frac{18}{5}$)D.($\frac{8}{3}$,$\frac{18}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=mx2-m(m-1)x+1在[0,+∞)上是增函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.m≤1B.0<m≤1C.0≤m≤1D.m≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(x+1),0<x≤2}\\{1-{2}^{x},-2≤x≤0}\end{array}\right.$,若函數(shù)y=|f(x)|圖象與直線y=kx+k有3個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{2e}$)C.[$\frac{ln3}{3}$,$\frac{1}{2e}$)D.[$\frac{ln3}{3}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出i的值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,交AC于點(diǎn)E,過點(diǎn)E作ED⊥BE交AB于點(diǎn)D.
(1)求證:AE2=AD•AB;
(2)已知AD=$\frac{2\sqrt{3}}{3}$,AE=2,求EC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.512015除以13,所得余數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖所示的流程圖是將一系列指令和問題用框圖的形式排列而成.箭頭說明下一步是到哪一個(gè)框圖,閱讀這個(gè)流程圖,回答下列問題:
如果$a={log_3}\frac{1}{2},b={(\frac{1}{2})^{\frac{1}{3}}},c=\frac{3}{2}•\frac{{{x^2}+1}}{x}(x≥1)$,那么輸出的數(shù)是c.(用a,b,c填空)

查看答案和解析>>

同步練習(xí)冊(cè)答案