分析 (1)由題意可知::|EM|+|EC|=|EN|+|EC|=|NC|=4,故動點E的軌跡為以M,C為焦點,長軸為4的橢圓,分別求得a、b和c的值,求得動點E的軌跡方程C1;
(2)設出直線l的方程,代入橢圓方程,由韋達定理求得x1+x2及x1x2,利用導數(shù)法求得直線PA和PB的斜率,由PA⊥PB,求得m的值,直線l過拋物線C2的焦點F,求得交點S的坐標,根據(jù)點到直線的距離公式,求得S到到直線l:kx-y+1=0的距離d,根據(jù)弦長公式求得丨PQ丨及|AB|,由$d=\sqrt{|{AB}|•|{PQ}|}$,求得28k4+36k2+7=0,此方程無解,不存在直線l,使得 $d=\sqrt{|{AB}|•|{PQ}|}$.
解答 解:(1)依題意有:|EM|+|EC|=|EN|+|EC|=|NC|=4,故動點E的軌跡為以M,C為焦點,長軸為4的橢圓.
于是:$a=2,c=\sqrt{2}$,從而$b=\sqrt{2}$,故動點E的軌跡方程C1為:$\frac{x^2}{4}+\frac{y^2}{2}=1$.
(2)設直線l:y=kx+m,A(x1,y1),B(x2,y2),P(x3,y3)Q(x4,y4),由$\left\{\begin{array}{l}y=kx+m\\{x^2}=4y\end{array}\right.$,
得:x2-4kx-4m=0,故x1+x2=4k,x1x2=-4m.
由x2=4y得:$y=\frac{1}{4}{x^2}$,即切線斜率$k=y'=\frac{x}{2}$.
于是:${k_{PA}}=\frac{x_1}{2},{k_{PB}}=\frac{x_2}{2}$,
由PA⊥PB得;${k_{PA}}•{k_{PB}}=\frac{x_1}{2}×\frac{x_2}{2}=\frac{{{x_1}{x_2}}}{4}=-m=-1$,
解得:m=1,
這說明直線l過拋物線C2的焦點F,由$\left\{\begin{array}{l}y=\frac{x_1}{2}x-\frac{x_1^2}{4}\\ y=\frac{x_2}{2}x-\frac{x_2^2}{4}\end{array}\right.$,
得:$x=\frac{{{x_1}+{x_2}}}{2}=2k,y=\frac{x_1}{2}•2k-\frac{x_1^2}{4}=k{x_1}-\frac{x_1^2}{4}=\frac{{{x_1}+{x_2}}}{2}{x_1}-\frac{x_1^2}{4}=\frac{{{x_1}{x_2}}}{4}=-1$即S(2k,-1).
于是:點S(2k,-1)到直線l:kx-y+1=0的距離$d=\frac{{2{k^2}+2}}{{\sqrt{1+{k^2}}}}=2\sqrt{1+{k^2}}$,
由$\left\{\begin{array}{l}y=kx+1\\{x^2}+2{y^2}=4\end{array}\right.$得:(1+2k2)x2+4kx-2=0,
從而$|{PQ}|=\sqrt{1+{k^2}}\frac{{\sqrt{{{({4k})}^2}-4({1+2{k^2}})•({-2})}}}{{1+2{k^2}}}=\sqrt{1+{k^2}}\frac{{\sqrt{8({1+4{k^2}})}}}{{1+2{k^2}}}$,
同理:|AB|=4(1+k2),
由$d=\sqrt{|{AB}|•|{PQ}|}$得$2\sqrt{({1+2{k^2}})}=\sqrt{4({1+{k^2}})•({1+{k^2}})\frac{{\sqrt{8({1+4{k^2}})}}}{{1+2{k^2}}}}$,
化簡整理,得:28k4+36k2+7=0,此方程無解,
所以不存在直線l,使得 $d=\sqrt{|{AB}|•|{PQ}|}$.
點評 本題考查橢圓的軌跡方程,考查直線與橢圓的位置關系,一元二次方程根與系數(shù)的關系,點到直線的距離公式等知識的綜合運用,考查分析問題及解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x0<c | B. | x0>c | C. | x0<b | D. | x0>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com