分析 (1)設(shè)圓E的標準方程為(x-a)2+(y-b)2=r2,(r>0),代入點(2,3),(0,1),($\sqrt{3}$,4),解方程組可得a,b,r,進而得到圓E的方程;可設(shè)圓F的方程為x2+(y-3)2=R2(R>0),運用點到直線的距離公式和弦長公式,可得半徑R=9,進而得到圓F的方程;
(2)設(shè)動圓W的圓心為(x,y),半徑為t(t>0),由題意可得圓W與圓E外切,可得|WE|=t+2,圓W與圓F相內(nèi)切,可得|WF|=9-t,再由橢圓的定義,可得W的軌跡為以E,F(xiàn)為焦點的橢圓,求得a,b,c,可得軌跡方程;
(3)可設(shè)直線l:x=my-1,聯(lián)立直線m:x+3y+6=0,可得N的坐標;聯(lián)立圓E的方程,消去x,可得y的方程,運用韋達定理和中點坐標公式,可得M的縱坐標,代入直線l方程可得M的橫坐標,再由向量數(shù)量積的坐標表示,計算可得$\overrightarrow{AM}$•$\overrightarrow{AN}$是定值-5,即可得到結(jié)論.
解答 解:(1)設(shè)圓E的標準方程為(x-a)2+(y-b)2=r2,(r>0),
由圓E經(jīng)過點(2,3),(0,1),($\sqrt{3}$,4),可得
$\left\{\begin{array}{l}{(2-a)^{2}+(3-b)^{2}={r}^{2}}\\{(-a)^{2}+(1-b)^{2}={r}^{2}}\\{(\sqrt{3}-a)^{2}+(4-b)^{2}={r}^{2}}\end{array}\right.$解得$\left\{\begin{array}{l}{a=0}\\{b=3}\\{r=2}\end{array}\right.$,
即圓E的標準方程為x2+(y-3)2=4;
圓F的圓心為(0,-3),可設(shè)圓F的方程為x2+(y-3)2=R2(R>0),
圓心F到直線x+3y+6=0的距離為d=$\frac{|-9+6|}{\sqrt{1+9}}$=$\frac{3}{\sqrt{10}}$,
則$\frac{3\sqrt{890}}{5}$=2$\sqrt{{R}^{2}-frpllzf^{2}}$=2$\sqrt{{R}^{2}-\frac{9}{10}}$,
解得R=9,
即有圓F的標準方程為x2+(y-3)2=81;
(2)設(shè)動圓W的圓心為(x,y),半徑為t(t>0),
由一動圓C與圓E、圓F都相切,可知圓W與圓E外切,
可得|WE|=t+2,
圓W與圓F相內(nèi)切,可得|WF|=9-t,
則|WE|+|WF|=t+2+9-t=11>|EF|=6,
由橢圓的定義可得W的軌跡為以E,F(xiàn)為焦點的橢圓,
且2a=11,2c=6,即a=$\frac{11}{2}$,c=3,
b2=a2-c2=$\frac{121}{4}$-9=$\frac{85}{4}$,
則動圓圓心W的軌跡方程為$\frac{4{y}^{2}}{121}$+$\frac{4{x}^{2}}{85}$=1;
(3)可設(shè)直線l:x=my-1,聯(lián)立直線m:x+3y+6=0,
可得交點N($\frac{-6m-3}{m+3}$,$\frac{-5}{m+3}$),
由$\left\{\begin{array}{l}{x=my-1}\\{{x}^{2}+(y-3)^{2}=4}\end{array}\right.$可得(1+m2)y2-(2m+6)y+6=0,
設(shè)P(x1,y1),Q(x2,y2),可得y1+y2=$\frac{2m+6}{1+{m}^{2}}$,
由M為PQ的中點,可得yM=$\frac{m+3}{1+{m}^{2}}$,
xM=myM-1=$\frac{3m-1}{1+{m}^{2}}$,
即M($\frac{3m-1}{1+{m}^{2}}$,$\frac{m+3}{1+{m}^{2}}$),
又A(-1,0),可得$\overrightarrow{AM}$=($\frac{3m+{m}^{2}}{1+{m}^{2}}$,$\frac{m+3}{1+{m}^{2}}$),
$\overrightarrow{AN}$=($\frac{-5m}{m+3}$,$\frac{-5}{m+3}$),
即有$\overrightarrow{AM}$•$\overrightarrow{AN}$=$\frac{3m+{m}^{2}}{1+{m}^{2}}$•$\frac{-5m}{m+3}$+$\frac{m+3}{1+{m}^{2}}$•$\frac{-5}{m+3}$
=$\frac{-5(m+3)(1+{m}^{2})}{(m+3)(1+{m}^{2})}$=-5.
則$\overrightarrow{AM}$•$\overrightarrow{AN}$為定值-5,與直線l的傾斜角無關(guān).
點評 本題考查圓的方程的求法,注意運用待定系數(shù)法,考查軌跡方程的求法,注意運用兩圓的相切的條件和橢圓的定義,考查直線和圓的位置關(guān)系和向量數(shù)量積的坐標表示,化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com