【題目】以下命題:①根據(jù)斜二測畫法,三角形的直觀圖是三角形;②有兩個平面互相平行,其余各面都是平行四邊形的多面體是棱柱;③兩相鄰側(cè)面所成角相等的棱錐是正棱錐;④若兩個二面角的半平面互相垂直,則這兩個二面角的大小相等或互補.其中正確命題的個數(shù)為( )
A. 1B. 2C. 3D. 4
【答案】A
【解析】
由斜二測畫法規(guī)則直接判斷①正確;舉出反例即可說明命題②、③、④錯誤;
對于①,由斜二測畫法規(guī)則知:三角形的直觀圖是三角形;故①正確;
對于②,如圖符合條件但卻不是棱柱;故②錯誤;
對于③,兩相鄰側(cè)面所成角相等的棱錐不一定是正棱錐,例如把如圖所示的正方形折疊成三棱錐不是正棱錐.故③錯誤;
對于④,一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個角的平面角相等或互補錯誤,如教室中的前墻面和左墻面構(gòu)成一個直二面角,底板面垂直于左墻面,垂直于前墻面且與底板面相交的面與底板面構(gòu)成的二面角不一定是直角.故④錯誤;
∴只有命題①正確.
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,動物園要圍成相同面積的長方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網(wǎng)圍成.
(1)現(xiàn)有可圍長網(wǎng)的材料,每間虎籠的長、寬各設(shè)計為多少時,可使每間虎籠面積最大?
(2)若使每間虎籠面積為,則每間虎籠的長、寬各設(shè)計為多少時,可使圍成四間虎籠的鋼筋網(wǎng)總長最��?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子和
中均裝有若干個大小相同的紅球和白球,從
中摸出一個紅球的概率是
,從
中摸出一個紅球的概率為
.
(1)從中有放回地摸球,每次摸出1個,有3次摸到紅球即停止,求恰好摸5次停止的概率.
(2)若、
兩個袋子中的球數(shù)之比為
,將
、
中的球裝在一起后,從中摸出一個紅球的概率是
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理:兩個等高的幾何體,若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.利用祖暅原理可以求旋轉(zhuǎn)體的體積.比如:設(shè)半圓方程為,半圓與
軸正半軸交于點
,作直線
,
交于點
,連接
(
為原點),利用祖暅原理可得:半圓繞
軸旋轉(zhuǎn)所得半球的體積與
繞
軸旋轉(zhuǎn)一周形成的幾何體的體積相等.類比這個方法,可得半橢圓
繞
軸旋轉(zhuǎn)一周形成的幾何體的體積是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為:
.
(I)若曲線,參數(shù)方程為:
(
為參數(shù)),求曲線
的直角坐標(biāo)方程和曲線
的普通方程
(Ⅱ)若曲線,參數(shù)方程為
(
為參數(shù)),
,且曲線
,與曲線
交點分別為
,求
的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,將圓
上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>
倍,再把所得曲線上每一點向下平移1個單位得到曲線
.以
為極點,以
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)寫出的參數(shù)方程和
的直角坐標(biāo)方程;
(2)設(shè)點在
上,點
在
上,求使
取最小值時點
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
),數(shù)列
的前
項和為
,點
在
圖象上,且
的最小值為
.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足
,記數(shù)列
的前
項和為
,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com