15.定義[x]為不超過x的最大整數(shù),如[3.2]=3.設(shè)x=[x]+{x},則下列論斷正確的有(  )
①[-2.6]=-2;②[n+x]=n+[x]其中n∈Z;③x-{x}=x+1-{x+1};④0≤{x}<1.
A.①②B.①③C.②③D.②④

分析 根據(jù)已知中:[x]為不超過x的最大整數(shù),x=[x]+{x},逐一分析四個(gè)結(jié)論的正誤,可得答案.

解答 解:∵[x]為不超過x的最大整數(shù),x=[x]+{x},
∴①[-2.6]=-3,故錯(cuò)誤;
②[n+x]=n+[x]其中n∈Z,正確;
③x-{x}=[x],
x+1-{x+1}=[x+1];
x-{x}≠x+1-{x+1},故錯(cuò)誤;
④0≤{x}<1,正確.
故選:D

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了新定義[x]與{x},正確理解新定義是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,有一塊半徑為2的半圓形鋼板,設(shè)計(jì)剪裁成矩形ABCD的形狀,它的邊AB在圓O的直徑上,邊CD的端點(diǎn)在圓周上,若設(shè)矩形的邊AD為x;
(1)將矩形的面積S表示為關(guān)于x的函數(shù),并求其定義域;
(2)求矩形面積的最大值及此時(shí)邊AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=2lnx+$\frac{m}{x+1}$.
(Ⅰ)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線與直線x-y+3=0平行,判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)若x≥1時(shí),f(x)≥1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.求兩點(diǎn) P(1,1,1)與 Q(4,3,1)之間的距離$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.正四棱柱ABCD-A1B1C1D1中,底面邊長為1,側(cè)棱長為2,則異面直線AC1與B1C所成角的余弦值是$\frac{\sqrt{30}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y=cos(2x-\frac{π}{3})$的單調(diào)遞增區(qū)間是( 。
A.$[2kπ-\frac{π}{3},2kπ+\frac{π}{6}]$k∈ZB.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$k∈Z
C.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$k∈ZD.$[2kπ+\frac{π}{6},2kπ+\frac{2π}{3}]$k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=1-2x,x∈[1,2]的值域?yàn)閇-3,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知焦點(diǎn)在y軸上的雙曲線的漸近線方程是:x±2y=0,雙曲線上動(dòng)點(diǎn)P到點(diǎn)A(5,0)的距離的最小值為$\sqrt{6}$,則雙曲線的準(zhǔn)線方程是( 。
A.x=±$\frac{{\sqrt{5}}}{5}$B.x=±$\frac{{2\sqrt{5}}}{5}$C.y=±$\frac{{\sqrt{5}}}{5}$D.y=±$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線(3+2λ)x+(3λ-2)y+5-λ=0恒過定點(diǎn)P,則與圓C:(x-2)2+(y+3)2=16有公共的圓心且過點(diǎn)P的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-2)2+(y+3)2=36B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2)2+(y+3)2=9

查看答案和解析>>

同步練習(xí)冊答案