【題目】在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ2cos θ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角)

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C有唯一的公共點,求角α的大。

【答案】1)當(dāng) 時,直線l方程為x=-1;當(dāng) 時,直線l方程為

y(x1)tanα; x2y22x 2.

【解析】

1)對直線l的傾斜角分類討論,消去參數(shù)即可求出其普通方程;由,即可求出曲線C的直角坐標(biāo)方程;

(2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,根據(jù)條件Δ0,即可求解.

(1)當(dāng)時,直線l的普通方程為x=-1;

當(dāng)時,消去參數(shù)

直線l的普通方程為y(x1)tan α.

ρ2cos θ,得ρ22ρcos θ,

所以x2y22x,即為曲線C的直角坐標(biāo)方程.

(2)x=-1tcos α,ytsin α代入x2y22x,

整理得t24tcos α30.

Δ16cos2α120,得cos2α

所以cos αcos α

故直線l的傾斜角α.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,原點為,拋物線的方程為,線段是拋物線的一條動弦.

1)求拋物線的準(zhǔn)線方程和焦點坐標(biāo);

2)當(dāng)時,設(shè)圓,若存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天干地支,簡稱為干支,源自中國遠(yuǎn)古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀(jì)年法是天干和地支依次按固定的順序相互配合組成,以此往復(fù),60年為一個輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2axb,g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.

(1)求ab,c,d的值;

(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確的是______.

①2至3月份的收入的變化率與11至12月份的收入的變化率相同;

②支出最高值與支出最低值的比是6:1;

③第三季度平均收入為50萬元;

④利潤最高的月份是2月份。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知),下列結(jié)論正確的是(

①當(dāng)時,恒成立;②當(dāng)時,的零點為;③當(dāng)時,的極值點;④若有三個零點,則實數(shù)k的取值范圍為.

A.①②④B.①③C.②③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)討論函數(shù)的單調(diào)性;

2)設(shè),若對于任意的,,有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)設(shè)函數(shù),討論的單調(diào)性;

2)設(shè)函數(shù),若的圖象與的圖象有兩個不同的交點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為坐標(biāo)原點,橢圓)過點,其上頂點為,右頂點和右焦點分別為,,且.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)直線交橢圓,兩點(異于點),,試判定直線是否過定點?若過定點,求出該定點坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案