10.用數(shù)字1,2,3,4,5組成的無重復數(shù)字的四位偶數(shù)的個數(shù)為( 。
A.120B.240C.24D.48

分析 本題需要分步計數(shù),首先選擇2和4排在末位時,共有A21種結(jié)果,再從余下的其余三位數(shù)從余下的四個數(shù)中任取三個有A43種結(jié)果,根據(jù)由分步計數(shù)原理得到符合題意的偶數(shù).

解答 解:由題意知本題需要分步計數(shù),
2和4排在末位時,共有A21=2種排法,
其余三位數(shù)從余下的四個數(shù)中任取三個有A43=4×3×2=24種排法,
根據(jù)由分步計數(shù)原理得到符合題意的偶數(shù)共有2×24=48(個).
故選D.

點評 本題考查分步計數(shù)原理,是一個數(shù)字問題,這種問題是最典型的排列組合問題,經(jīng)常出現(xiàn)限制條件,并且限制條件變化多樣.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.下面使用類比推理正確的是( 。
A.由實數(shù)運算“(ab)t=a(bt)”類比到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
B.由實數(shù)運算“(ab)t=at+bt”類比到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”
C.由實數(shù)運算“|ab|=|a||b|”類比到“|$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|”
D.由實數(shù)運算“$\frac{ac}{bc}$=$\frac{a}$”類比到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.二項展開式(2x-1)10中x的奇次冪項的系數(shù)之和為$\frac{1-{3}^{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)直線l經(jīng)過點P(3,4),圓C的方程為(x-1)2+(y+1)2=4.
(1)若直線l經(jīng)過圓C的圓心,求直線l的斜率;
(2)若直線l與圓C交于兩個不同的點,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.${∫}_{-1}^{1}$(-1)dx=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,用y表示點數(shù)之和.
(1)求事件“y=4”的概率;
(2)求事件“y≤10”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知a,b,m∈R,則下面推理中正確的是( 。
A.a>b⇒$\frac{a}$>1B.a>b⇒am2>bm2
C.a3>b3,ab>0⇒$\frac{1}{a}$<$\frac{1}$D.a2>b2,ab>0⇒$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知Sn為數(shù)列{an}的前n項和,若an(4+cosnπ)=n(2-cosnπ),則S20=(  )
A.31B.122C.324D.484

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某工廠制造甲、乙兩種產(chǎn)品,已知制造1t甲產(chǎn)品要用煤9t,電力4kW,勞動力(按工作日計算)3個;制造1t乙產(chǎn)品要用煤4t,電力5kW,勞動力10個.又知制成甲產(chǎn)品1t可獲利7萬元,制成乙產(chǎn)品1t可獲利12萬元.現(xiàn)在此工廠只有煤360t,電力200kW,勞動力300個,在這種條件下應生產(chǎn)甲、乙兩種產(chǎn)品各多少噸能獲得最大經(jīng)濟效益?

查看答案和解析>>

同步練習冊答案