1.二項(xiàng)展開式(2x-1)10中x的奇次冪項(xiàng)的系數(shù)之和為$\frac{1-{3}^{10}}{2}$.

分析 設(shè)(2x-1)10=a0+a1x+a2x2+…+a10x10,令x=1,x=-1,兩式相減可得結(jié)論.

解答 解:設(shè)(2x-1)10=a0+a1x+a2x2+…+a10x10
令x=1,得1=a0+a1+a2+…+a10,
再令x=-1,得310=a0-a1+a2-a3+…-a9+a10,
兩式相減可得a1+a3+…+a9=$\frac{1-{3}^{10}}{2}$,
故答案為:$\frac{1-{3}^{10}}{2}$.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的運(yùn)用,考查賦值法的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.圓x2+(y-1)2=4上點(diǎn)到曲線f(x)=-x3+3x2在點(diǎn)(1,f(1))處的切線的最遠(yuǎn)距離為( 。
A.$\frac{\sqrt{10}}{4}$B.$\frac{10+\sqrt{10}}{5}$C.$\frac{10-\sqrt{10}}{5}$D.$\frac{10+2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.要得到函數(shù)y=sin ($\frac{π}{4}$-$\frac{x}{2}$)的圖象,只需將y=cos $\frac{x}{2}$的圖象( 。
A.向左平移$\frac{π}{2}$個(gè)單位B.向右平移$\frac{π}{2}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.計(jì)算log25•log32•log53的值為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若|$\overrightarrow{AB}$|=5,|$\overrightarrow{AC}$|=8,則|$\overrightarrow{BC}$|的取值范圍是( 。
A.[3,8]B.(3,8)C.[3,13]D.(3,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=4,那么$\overrightarrow{a}$•(2$\overrightarrow{a}$-$\overrightarrow$)的值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a,b是方程x2-x-$\sqrt{2}$=0的兩個(gè)不等的實(shí)數(shù)根,則點(diǎn)P(a,b)與圓C:x2+y2=8的位置關(guān)系是( 。
A.點(diǎn)P在圓C內(nèi)B.點(diǎn)P在圓C外C.點(diǎn)P在圓C上D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.用數(shù)字1,2,3,4,5組成的無(wú)重復(fù)數(shù)字的四位偶數(shù)的個(gè)數(shù)為(  )
A.120B.240C.24D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.對(duì)于等差數(shù)列{an}有如下命題:“若{an}是等差數(shù)列,a1=0,s、t是互不相等的正整數(shù),則有(s-1)at-(t-1)as=0”.類比此命題,給出等比數(shù)列{bn}相應(yīng)的一個(gè)正確命題是:“若{bn}是等比數(shù)列,b1=1,s、t是互不相等的正整數(shù),則有$\frac{{_{t}}^{s-1}}{{_{s}}^{t-1}}$=1”.

查看答案和解析>>

同步練習(xí)冊(cè)答案