A. | 最小值9 | B. | 最大值9 | C. | 最小值4 | D. | 最大值4 |
分析 求出f(x)的導(dǎo)數(shù),可得切線的斜率,由兩點(diǎn)的斜率公式,化簡可得4a+b=1,由$\frac{1}{a}+\frac{1}$=(4a+b)($\frac{1}{a}+\frac{1}$),化簡整理,運(yùn)用基本不等式即可得到所求最小值.
解答 解:$f(x)=a{x^2}+\frac{x}$(a>0,b>0)的導(dǎo)數(shù)為f′(x)=2ax-$\frac{{x}^{2}}$,
可得曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為k=2a-b,
切點(diǎn)為(1,a+b),
可得2a-b=$\frac{a+b-\frac{1}{2}}{1-\frac{3}{2}}$,
化為4a+b=1,
則有$\frac{1}{a}+\frac{1}$=(4a+b)($\frac{1}{a}+\frac{1}$)=5+$\frac{a}$+$\frac{4a}$≥5+2$\sqrt{\frac{a}•\frac{4a}}$=9,
當(dāng)且僅當(dāng)b=2a=$\frac{1}{3}$時(shí),取得最小值9.
故選:A.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查基本不等式的運(yùn)用:求最值,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-i | B. | 2+i | C. | -2+i | D. | -2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin($\frac{x}{2}$+$\frac{π}{6}$) | B. | y=cos(2x+$\frac{π}{3}$) | C. | y=cos(2x-$\frac{π}{6}$) | D. | y=sin(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,$\sqrt{2}$] | B. | [0,2$\sqrt{2}$] | C. | [1,$\sqrt{3}$] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$±\frac{\sqrt{3}}{3}$x | B. | y=$±\sqrt{3}$x | C. | y=±x | D. | y=±2x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com