設(shè)函數(shù)f(x+2)=2x+3,則f(x)的解析式為( 。
A、f(x)=2x+1
B、f(x)=2x-1
C、f(x)=2x-3
D、f(x)=2x+7
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x+2)=2x+3=2(x+2)-1,進(jìn)而將(x+2)全部替換成x后,即可得到答案.
解答: 解:∵f(x+2)=2x+3=2(x+2)-1
∴f(x)=2x-1
故選:B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)解析式的求解及其常用方法,其中本題使用的湊配法,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知有A、B、C三種產(chǎn)品件數(shù)分別為x、y、180,現(xiàn)用分層抽樣的方法抽出容量為50的樣本,樣本中產(chǎn)品B、C分別有20件、12件,則y-x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線:y2=2px(p>0)的焦點(diǎn)F在上雙曲線:
x2
3
-
y2
6
=1的右準(zhǔn)線上,拋物線與直線l:y=k(x-2)(k≠0)交于A、B兩點(diǎn),AF、BF的延長(zhǎng)線與拋物線交于C、D兩點(diǎn).
(1)求拋物線的方程;
(2)求證:直線CD恒過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若2x2+3(m-1)x+m2-3m+2<0的解集為空集,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)l是空間中的一條直線,α,β是兩個(gè)不同的平面,已知l⊥α,則“l(fā)⊥β”是“α∥β”的(  )
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)、g(x)都是定義域?yàn)镽的連續(xù)函數(shù).已知:g(x)滿足:①當(dāng)x>O時(shí),g′(x)>0 恒成立;②?x∈R都有g(shù)(x)=g(-x).f(x)滿足:①?x∈R都有f(x+
3
)=f(x-
3
);②當(dāng)x∈[-
3
2
3
2
]時(shí),f(x)=x3-3x.若關(guān)于;C的不等式g[f(x)]≤g(a2-a+2)對(duì)x∈[-
3
2
-2
3
,
3
2
-2
3
]恒成立,則a的取值范圍是(  )
A、(-∞,0]∪[1,+∞)
B、[0,1]
C、[
1
2
-
3
3
4
,-
1
2
+
3
3
4
]
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>b,則①ac2>bc2;②2a>2b;③
1
a
1
b
;④a3>b3;⑤|a|>|b|.正確的結(jié)論有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=4x-2x+1的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在滿足x2+y2≤25的實(shí)數(shù)對(duì)(x,y)中,任取一組(x,y),恰使|x|+|y|≤5成立的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案