【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=n(n+2)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn,求數(shù)列{bn}的前n項和Tn.
【答案】(1)an=2n+1;(2)Tn.
【解析】
(1)由n=1時求得a1,當(dāng)n≥2時,由Sn=n(n+2)(n∈N*)① ,
可得Sn﹣1=(n﹣1)(n+1)② ,由①﹣②得an=2n+1,再檢驗當(dāng)n=1時是否適合,求得an;
(2)由(1)求得bn,再利用錯位相減法求其前n項和Tn即可.
解:(1)由題知:當(dāng)n=1時,有S1=1×3=3=a1;
當(dāng)n≥2時,由Sn=n(n+2)(n∈N*)① ,
可得Sn﹣1=② ,由①﹣② 得an=2n+1,
又n=1時也適合,故an=2n+1;
(2)由(1)知bn,
∵Tn=357×()3+…+(2n+1)()n③,
∴35×()3+…+(2n+1)④,
由③﹣④可得:
,
所以Tn.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年前某市質(zhì)監(jiān)部門根據(jù)質(zhì)量管理考核指標(biāo)對本地的500家食品生產(chǎn)企業(yè)進(jìn)行考核,然后通過隨機(jī)抽樣抽取其中的50家,統(tǒng)計其考核成績(單位:分),并制成如下頻率分布直方圖.
(1)求這50家食品生產(chǎn)企業(yè)考核成績的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)及中位數(shù)a(精確到0.01)
(2)該市質(zhì)監(jiān)部門打算舉辦食品生產(chǎn)企業(yè)質(zhì)量交流會,并從這50家食品生產(chǎn)企業(yè)中隨機(jī)抽取4家考核成績不低于88分的企業(yè)發(fā)言,記抽到的企業(yè)中考核成績在的企業(yè)數(shù)為X,求X的分布列與數(shù)學(xué)期望
(3)若該市食品生產(chǎn)企業(yè)的考核成績X服從正態(tài)分布其中近似為50家食品生產(chǎn)企業(yè)考核成績的平均數(shù),近似為樣本方差,經(jīng)計算得,利用該正態(tài)分布,估計該市500家食品生產(chǎn)企業(yè)質(zhì)量管理考核成績高于90.06分的有多少家?(結(jié)果保留整數(shù)).
附參考數(shù)據(jù)與公式:
則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關(guān)于原點的對稱點為,直線交于點.
(1)求橢圓方程;
(2)若直線與橢圓交于另一點,且,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個正四棱錐的條棱中任取兩條,按下列方式定義隨機(jī)變量的值:
若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大小(弧度制);
若這兩條棱所在的直線平行,則;
若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求的值;
(2)求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣2|的最大值為M,正實數(shù)a,b滿足a+b=M.
(1)求2a2+b2的最小值;
(2)求證:aabb≥ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐中,與均為等腰直角三角形,且,,為上一點,且平面.
(1)求證:;
(2)過作一平面分別交, , 于,,,若四邊形為平行四邊形,求多面體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中某班共有40個學(xué)生,將學(xué)生的身高分成4組:平頻率/組距,,,進(jìn)行統(tǒng)計,作成如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的值和身高在內(nèi)的人數(shù);
(2)求這40個學(xué)生平均身高的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線的普通方程以及曲線C的參數(shù)方程;
(2)過曲線C上任意一點M作與直線的夾角為的直線,交于點N,求的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com