一個(gè)口袋中裝有大小相同的2個(gè)白球和3個(gè)黑球.
(Ⅰ)從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;
(Ⅱ)從中摸出一個(gè)球,放回后再摸出一個(gè)球,求兩球恰好顏色不同的概率.

解:(Ⅰ)由題意知本題是一個(gè)等可能事件的概率
記“摸出兩個(gè)球,兩球恰好顏色不同”為A,
摸出兩個(gè)球共有方法C52=10種,
其中兩球一白一黑有C21•C31=6種.

(Ⅱ)記摸出一球,放回后再摸出一個(gè)球“兩球恰好顏色不同”為B,
摸出一球得白球的概率為,摸出一球得黑球的概率為,
“放回后再摸一次,兩球顏色不同”指“先白再黑”或“先黑再白”,這兩種情況是互斥的
∴P(B)=0.4×0.6+0.6×0.4=0.48
分析:(Ⅰ)本題是一個(gè)等可能事件的概率,摸出兩個(gè)球共有方法C52種,其中兩球一白一黑有C21•C31種,得到概率.
(II)摸出一球得白球的概率為,摸出一球得黑球的概率為,“放回后再摸一次,兩球顏色不同”指“先白再黑”或“先黑再白”,這兩種情況是互斥的,得到概率.
點(diǎn)評(píng):本題考查等可能事件的概率公式,本題解題的關(guān)鍵是寫(xiě)出試驗(yàn)發(fā)生包含的事件數(shù)和滿(mǎn)足條件的事件數(shù),再用公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)口袋中裝有大小相同的2個(gè)紅球,3個(gè)黑球和4個(gè)白球,從口袋中一次摸出一個(gè)球,摸出的球不再放回.
(Ⅰ)連續(xù)摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出紅球,則停止摸球,求摸球次數(shù)不超過(guò)3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球,要從中摸出兩個(gè)球.
(Ⅰ)采取放回抽取方式,求摸出兩球顏色恰好不同的概率;
(Ⅱ)采取不放回抽取方式,記摸得白球的個(gè)數(shù)為ξ,試求ξ的分布列,并求它的期望和方差.(方差Dξ=
ni=1
pi(ξi-Eξ)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河西區(qū)一模)一個(gè)口袋中裝有大小相同的2個(gè)白球和3個(gè)黑球.
(1)采取放回抽樣方式,從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個(gè)球,求摸得白球的個(gè)數(shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.采取不放回抽樣方式,從中摸出兩個(gè)球,設(shè)摸得白球的個(gè)數(shù)為ξ,則Eξ=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)口袋中裝有大小相同的8個(gè)白球和7個(gè)黑球,從中任意摸出2個(gè)球,則摸出的2個(gè)球至少有一個(gè)是白球的概率是
86
105
86
105
(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案