12.如圖,在△ABC中,AB=BC=$\sqrt{6}$,∠ABC=90°,點(diǎn)D為AC的中點(diǎn),將△ABD沿BD折起到△PBD的位置,使PC=PD,連接PC,得到三棱錐P-BCD,若該三棱錐的所有頂點(diǎn)都在同一球面上,則該球的表面積是( 。
A.πB.C.D.

分析 由題意得該三棱錐的面PCD是邊長為$\sqrt{3}$的正三角形,且BD⊥平面PCD,求出三棱錐P-BDC外接球半徑R=$\frac{\sqrt{7}}{2}$,由此能示出該球的表面積.

解答 解:由題意得該三棱錐的面PCD是邊長為$\sqrt{3}$的正三角形,
且BD⊥平面PCD,
設(shè)三棱錐P-BDC外接球的球心為O,
△PCD外接圓的圓心為O1,則OO1⊥面PCD,
∴四邊形OO1DB為直角梯形,
由BD=$\sqrt{3}$,O1D=1,及OB=OD,得OB=$\frac{\sqrt{7}}{2}$,
∴外接球半徑為R=$\frac{\sqrt{7}}{2}$,
∴該球的表面積S=4πR2=4$π×\frac{7}{4}$=7π.
故選:D.

點(diǎn)評(píng) 本題考查球的表面積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意三棱錐的外接球的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=$\sqrt{lg(5-{x}^{2})}$的定義域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示,給出下列條件:
①∠B=∠ACD;
②∠ADC=∠ACB;
③$\frac{AC}{CD}$=$\frac{AB}{BC}$;
④AC2=AD•AB.
其中能夠單獨(dú)判定△ABC∽△ACD的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.現(xiàn)有6名高職學(xué)生到某公司A、B、C、D、E五個(gè)崗位實(shí)習(xí),每個(gè)崗位至少有一名學(xué)生,則學(xué)生小王和小李恰好被安排在崗位A實(shí)習(xí)的概率是$\frac{1}{75}$(結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx-e1-x,g(x)=a(x2-1)-$\frac{1}{x}$.
(1)判斷函數(shù)y=f(x)零點(diǎn)的個(gè)數(shù),并說明理由;
(2)記h(x)=g(x)-f(x)+$\frac{{e}^{x}-ex}{x{e}^{x}}$,討論h(x)的單調(diào)性;
(3)若f(x)<g(x)在(1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在數(shù)列{an}中,已知a1=3,且數(shù)列{an+(-1)n}是公比為2的等比數(shù)列,對(duì)于任意的n∈N*,不等式a1+a2+…+an≥λan+1恒成立,則實(shí)數(shù)λ的取值范圍是( 。
A.$({-∞,\frac{2}{5}}]$B.$({-∞,\frac{1}{2}}]$C.$({-∞,\frac{2}{3}}]$D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,左、右焦點(diǎn)分別是F1、F2,在橢圓E上有一動(dòng)點(diǎn)A,過A、F1作一個(gè)平行四邊形,使頂點(diǎn)A、B、C、D都在橢圓E上,如圖所示.
(Ⅰ) 判斷四邊形ABCD能否為菱形,并說明理由.
(Ⅱ) 當(dāng)四邊形ABCD的面積取到最大值時(shí),判斷四邊形ABCD的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其短軸為2,離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的右焦點(diǎn)為F,過點(diǎn)G(2,0)作斜率不為0的直線交橢圓E于M,N兩點(diǎn),設(shè)直線FM和FN的斜率為k1,k2,試判斷k1+k2是否為定值,若是定值,求出該定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2. 如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(Ⅰ)若M為PA的中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)若PB與平面ABCD所成角為45°,求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案