A. | $\frac{2}{3}$ | B. | $\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
分析 利用向量的運算法則將已知等式化簡得到$\overrightarrow{OB}=-\overrightarrow{OA}$,得到AB為直徑,故△ABC為直角三角形,求出三邊長可得A 的值,利用兩個向量的數(shù)量積的定義求值.
解答 解:因為2$\overrightarrow{OC}$$+\overrightarrow{CB}$$+\overrightarrow{CA}$=$\overrightarrow{0}$,所以$\overrightarrow{OC}+\overrightarrow{CB}+\overrightarrow{OC}+\overrightarrow{CA}=\overrightarrow{0}$,所以$\overrightarrow{OB}=-\overrightarrow{OA}$,
所以O,B,A共線,AB為圓的直徑,
所以AC⊥BC,△ABC外接圓的半徑為1,圓心為O,
$\overrightarrow{OC}$|=|$\overrightarrow{CB}$|,
所以∠A=30°,BC=1,AC=$\sqrt{3}$
所以$\overrightarrow{AC}$$•\overrightarrow{AB}$=|$\overrightarrow{AC}$||$\overrightarrow{AB}$|cos30°=$\sqrt{3}$×2×$\frac{\sqrt{3}}{2}$=3;
故選C.
點評 本題主要考查向量在幾何中的應用、向量的數(shù)量積,向量垂直的充要條件等基本知識.求出△ABC為直角三角形及三邊長,是解題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8$\sqrt{5}$ | B. | $\frac{2\sqrt{5}}{3}$ | C. | $\frac{4\sqrt{5}}{3}$ | D. | $\frac{8\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B盒中編號為奇數(shù)的小球與C盒中編號為偶數(shù)的小球一樣多 | |
B. | B盒中編號為偶數(shù)的小球不多于C盒中編號為偶數(shù)的小球 | |
C. | B盒中編號為偶數(shù)的小球與C盒中編號為奇數(shù)的小球一樣多 | |
D. | B盒中編號為奇數(shù)的小球多于C盒中編號為奇數(shù)的小球 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
廣告費用x(萬元) | 2 | 3 | 4 | 5 |
銷售額y(萬元) | 26 | 39 | 49 | 54 |
A. | 63.6萬元 | B. | 65.5萬元 | C. | 67.7萬元 | D. | 72.0萬元 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -3或3 | D. | 2或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com