19.如圖,海上有A,B兩個小島相距10km,船O將保持觀望A島和B島所成的視角為60°,現(xiàn)從船O上派下一只小艇沿BO方向駛至C處進行作業(yè),且OC=BO.設AC=10$\sqrt{3}$km,則OA2+OB2=200.

分析 根據(jù)OC=BO,分別在△OAC與△OAB中利用余弦定理,可得300=OA2+OB2+OA•OB且100=OA2+OB2-OA•OB,兩式聯(lián)解即可得出OA2+OB2

解答 解:在△OAC中,∠AOC=120°,AC=10$\sqrt{3}$,
根據(jù)余弦定理,可得OA2+OC2-2OA•OCcos120°=AC2=300,
又∵OC=BO,∴300=OA2+OB2-2OA•OBcos120°,即300=OA2+OB2+OA•OB…①
在△OAB中,AB=10,∠AOB=60°,
∴由余弦定理,得OA2+OB2-2OA•OBcos60°=100,即100=OA2+OB2-OA•OB …②,
①+②,可得OA2+OB2=200,
故答案為:200.

點評 本題給出實際應用問題,著重考查了余弦定理,考查了解三角形知識在實際問題中的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.對大于或等于2的自然數(shù)的3次方可以做如下分解:23=3+5,33=7+9+11,43=13+15+17+19,…,根據(jù)上述規(guī)律,103的分解式中,最大的數(shù)是109.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學(男30女20),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如表:(單位:人)
幾何題代數(shù)題總計
男同學22830
女同學81220
總計302050
(Ⅰ)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關?
(Ⅱ)經過多次測試后,甲每次解答一道幾何題所用的時間在5-7分鐘,乙每次解答一道幾何題所用的時間在6-8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(Ⅲ)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若x>y>0,m>n,則下列不等式正確的是( 。
A.xm>ymB.x-m≥y-nC.$\frac{x}{n}$>$\frac{y}{m}$D.$x>\sqrt{xy}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,AB=2,BC=3$\sqrt{3}$,∠ABC=30°,AD為BC邊上的高,若$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則$\frac{λ}{μ}$等于( 。
A.2B.$\frac{1}{2}$C.$\frac{2}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.把數(shù)字“2、0、1、3”四個數(shù)字任意排列,并且每兩個數(shù)字間用加號“+”或減號“-”連接,則不同的運算結果有( 。
A.6種B.7種C.12種D.13種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列命題正確的是( 。
A.若a<b<0,則ac<bcB.若a>b,c>d,則ac>bd
C.若a>b,則$\frac{1}{a}$<$\frac{1}$D.若$\frac{a}{{c}^{2}}$>$\frac{{c}^{2}}$,c≠0,則a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=xlnx-$\frac{a}{2}{x^2}$-x,其中(a∈R).
(1)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)y=f(x)有兩個極值點x1,x2,且x1<x2,
①求實數(shù)a的取值范圍;   
②證明f(x1)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若x>y,a>b,則在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a,⑤$\frac{a}{y}$>$\frac{x}$這五個式子中,不恒成立的不等式序號是①③⑤.

查看答案和解析>>

同步練習冊答案