9.某公司生產(chǎn)三種型號(hào)A,B,C的轎車(chē),產(chǎn)量分別為1200輛,6000輛,2000輛.為檢驗(yàn)該公司的產(chǎn)品質(zhì)量,現(xiàn)用分層抽樣的方法抽取46輛進(jìn)行檢驗(yàn),則型號(hào)A的轎車(chē)應(yīng)抽取6輛.

分析 由題意先求出抽樣比例即為,再由此比例計(jì)算出在A種型號(hào)的轎車(chē)抽取的數(shù)目.

解答 解:因總轎車(chē)數(shù)為9200輛,而抽取46輛進(jìn)行檢驗(yàn),抽樣比例為$\frac{46}{9200}$=$\frac{1}{200}$,
則型號(hào)A的轎車(chē)應(yīng)抽取1200×$\frac{1}{200}$=6
故答案為:6.

點(diǎn)評(píng) 本題的考點(diǎn)是分層抽樣,即保證樣本的結(jié)構(gòu)和總體的結(jié)構(gòu)保持一致,按照一定的比例樣本容量和總體容量的比值,在各層中進(jìn)行抽取.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.計(jì)算:-2-2-$\sqrt{(-3)^{2}}$+(π-3.14)0+$\sqrt{\frac{1}{8}}$sin45°=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一個(gè)高為3的直三棱柱的俯視圖是腰長(zhǎng)為2的等腰直角三角形,如圖所示,則此直三棱柱的俯視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.用五種不同的顏色來(lái)涂如圖所示的田字形區(qū)域,要求同一區(qū)域上用同一種顏色,相鄰區(qū)域用不同的顏色(A與C、B與D不相鄰).
(1)求恰好使用兩種顏色完成涂色任務(wù)的概率;
(2)設(shè)甲、乙兩人各自相互獨(dú)立完成涂色任務(wù),記他們所用顏色的種數(shù)差的絕對(duì)值為ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是(0,$\sqrt{3}$),(0,-$\sqrt{3}$),且AC,BC所在直線的斜率之積等于m(m≠0).
(1)求頂點(diǎn)C的軌跡M的方程,并判斷軌跡M為何種曲線;
(2)當(dāng)m=-$\frac{3}{4}$時(shí),點(diǎn)P(1,t)為曲線M上點(diǎn),且點(diǎn)P為第一象限點(diǎn),過(guò)點(diǎn)P作兩條直線與曲線M交于E,F(xiàn)兩點(diǎn),直線PE,PF斜率互為相反數(shù),則直線EF斜率是否為定值,若是,求出定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),則$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{x}$(x>0),對(duì)于正數(shù)x1,x2,…,xn(n∈N+),記Sn=x1+x2+…+xn,如圖,由點(diǎn)(0,0),(xi,0),(xi,f(xi)),(0,f(xi))構(gòu)成的矩形的周長(zhǎng)為Ci(i=1,2,…,n),都滿足Ci=4Si(i=1,2,…,n).
(Ⅰ)求x1;
(Ⅱ)猜想xn的表達(dá)式(用n表示),并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.用數(shù)學(xué)歸納法證明:當(dāng)n≥2,n∈N時(shí),$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{{n}^{2}}$>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=ln(x+m)的圖象與g(x)的圖象關(guān)于x+y=0對(duì)稱,且g(0)+g(-ln2)=1,則m=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案