18.用數(shù)學(xué)歸納法證明:當(dāng)n≥2,n∈N時,$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{{n}^{2}}$>1.

分析 利用數(shù)學(xué)歸納法證明:(1)當(dāng)n=2時,證明不等式成立;(2)假設(shè)n=k(k≥2,k∈N*)時命題成立,用上歸納假設(shè),去證明則當(dāng)n=k+1時,不等式也成立即可.

解答 證明:(1)當(dāng)n=2時,左邊=$\frac{1}{1}$+$\frac{1}{3}$+$\frac{1}{4}$>1,不等式成立;
(2)假設(shè)n=k(k≥2,k∈N*)時命題成立,即$\frac{1}{k}$+$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{{k}^{2}}$>1,
那么當(dāng)n=k+1時,$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{(k+1)^{2}}$=$\frac{1}{k}$+$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{{k}^{2}+2k}$+$\frac{1}{(k+1)^{2}}$-$\frac{1}{k}$,
>1+$\frac{1}{{k}^{2}+1}$+$\frac{1}{{k}^{2}+2}$+…+$\frac{1}{{k}^{2}+2k}$+$\frac{1}{(k+1)^{2}}$-$\frac{1}{k}$,
>1+(2k+1)$\frac{1}{(k+1)^{2}}$-$\frac{1}{k}$,
>1+$\frac{{k}^{2}-k-1}{{k}^{2}+2k+1}$>1
∴當(dāng)n=k+1時不等式也成立,
綜上,由(1)(2)知,原不等式對?n≥2(n∈N*)均成立.

點評 本題考查數(shù)學(xué)歸納法,考查推理證明的能力,假設(shè)n=k(k≥2,k∈N*)時命題成立,去證明則當(dāng)n=k+1時,用上歸納假設(shè)是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系中,曲線C1:$\left\{\begin{array}{l}{x=8cosθ}\\{y=6sinθ}\end{array}\right.$ (θ為參數(shù)),直線C2:$\left\{\begin{array}{l}{x=t+1}\\{y=t-1}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C3::ρ=4.
(I)若C2與C3相交于A,B兩點,求AB的長;
(Ⅱ)P為C3上一點,P的極坐標(biāo)為(4,$\frac{3π}{2}$),Q為C1上的動點,PQ的中點為M,求M到直線C2的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某公司生產(chǎn)三種型號A,B,C的轎車,產(chǎn)量分別為1200輛,6000輛,2000輛.為檢驗該公司的產(chǎn)品質(zhì)量,現(xiàn)用分層抽樣的方法抽取46輛進行檢驗,則型號A的轎車應(yīng)抽取6輛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)2134與1455的最大公約數(shù)為m,則m化為三進制數(shù)為10121(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.甲、乙、丙、丁和戊5名同學(xué)進行數(shù)學(xué)應(yīng)用知識比賽,決出第1名至第5名(沒有重復(fù)名次).已知甲、乙均未得到第1名,且乙不是最后一名,則5人的名次排列情況可能有( 。
A.27種B.48種C.54種D.72種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x)滿足:f(x+4)=f(x),f(x)=$\left\{\begin{array}{l}{2x,x∈(-1.1]}\\{-{x}^{2}+2x+1,x∈(1,3]}\\{\;}\end{array}\right.$,當(dāng)x∈[0,+∞)時,方程f(x)-4xa=0(a>0)有且只有3個不等實根,則實數(shù)a的值為(e是自然對數(shù)底數(shù))(  )
A.$\frac{1}{{2}^{8}eln2}$B.$\frac{1}{{2}^{9}}$C.$\frac{e}{{2}^{8}ln2}$D.$\frac{e}{{2}^{9}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩人擲均勻硬幣,其中甲擲m次,乙擲n次,擲出的正面次數(shù)依次記為x,y.
(Ⅰ)若m+n=10,記ξ=x+y,求P(ξ=k)的最大值:
(Ⅱ)若m=3,n=2,求x-y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,BC=1,且AC⊥BC,點D,E,F(xiàn)分別為AC,AB,A1C1的中點.
(Ⅰ)求證:A1D⊥平面ABC;
(Ⅱ)求證:EF∥平面BB1C1C;
(Ⅲ)寫出四棱錐A1-BB1C1C的體積.(只寫出結(jié)論,不需要說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.執(zhí)行如圖所示的程序框圖,若輸入x=6,則輸出y的值為-$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案