14.若四個數(shù)9,x,y,243成等比數(shù)列,則x=27,y=81.

分析 設(shè)此等比數(shù)列的公比為q,可得243=9•q3,解得q.再利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)此等比數(shù)列的公比為q,
則243=9•q3,解得q=3.
∴x=9×3=27,
y=27×3=81.
故答案分別為:27;81.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某高校調(diào)查了200名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時間不少于22.5小時的人數(shù)是( 。
A.56B.60C.120D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個數(shù)為( 。
A.24B.48C.60D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(x2-$\frac{1}{x}$)8的展開式中x7的系數(shù)為-56(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦點(diǎn)為F,右頂點(diǎn)為A.已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O為原點(diǎn),e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)A的直線l與橢圓交于點(diǎn)B(B不在x軸上),垂直于l的直線與l交于點(diǎn)M,與y軸于點(diǎn)H,若BF⊥HF,且∠MOA≤∠MAO,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x||x+a|≥a},B={x|x2+mx+n<0}
(1)若a=2,m=4,n=-5,求A∩B,A∪B;
(2)若a>0,A∩B=(-3,-1],且A∪B=R,求a,m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=sinx-$\sqrt{3}$cosx的圖象可由函數(shù)y=2sinx的圖象至少向右平移$\frac{π}{3}$個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合S={x|(x-2)(x-3)≥0},T={x|x>0},則S∩T=( 。
A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=cosx-sinx(x∈R),下列說法錯誤的是( 。
A.函數(shù)f(x)的最小正周期是2πB.函數(shù)f(x)在定義域內(nèi)是奇函數(shù)
C.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上是減函數(shù)D.函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{4}$對稱

查看答案和解析>>

同步練習(xí)冊答案