已知某幾何體的三視圖如圖所示,則該幾何體的體積為
 
;表面積為
 

考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:由三視圖知幾何體為圓錐的一半,且圓錐的底面圓半徑為1,高為3,代入圓錐的體積公式計算.
解答: 解:由三視圖知幾何體為圓錐的一半,且圓錐的底面圓半徑為1,高為3,
∴幾何體的體積V=
1
2
×
1
3
π×12×3=
π
2
,表面積為
1
2
×π×12
+
1
2
×2×3
+
10
π=3+(
10
+
1
2
)π.
故答案為:
π
2
,3+(
10
+
1
2
)π.
點評:本題考查了由三視圖求幾何體的體積、表面積,解題的關(guān)鍵是判斷幾何體的形狀及三視圖的數(shù)據(jù)所對應(yīng)的幾何量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=logm
x+1
1-x
(m>0,且m≠1)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)解關(guān)于x的方程f(x)=logm
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x2-2bx+6在(2,8)內(nèi)是增函數(shù),求b的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x|<1},B={x|2x>1},則A∩B=( 。
A、(-1,0)
B、(-1,1)
C、(0,
1
2
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(π-ωx)cosωx+cos2ωx的最小正周期為π,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|-1<x<3},B={x|x<1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,D、E分別為AB、BB1的中點.
(1)證明:BC1∥平面A1CD
(2)若AA1=AC=CB=2,AB=2
2
,求三棱錐A1-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(
3
sinx,cosx),
b
=(cosx,cosx),記f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期;
(2)試用“五點法”畫出函數(shù)f(x)在區(qū)間[-
π
12
11π
12
]的簡圖;
(3)若對任意x∈[-
π
6
,
π
3
]時,不等式f(x)-m≥f(0)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-5,5),
b
=(-3,4),則(
a
-
b
)在
b
方向上的投影等于
 

查看答案和解析>>

同步練習(xí)冊答案