【題目】設函數(shù).
(1)若存在最大值,且,求實數(shù)的取值范圍;
(2)令,,求證:對任意的,總存在最小值,且.
【答案】(1);(2)證明見解析
【解析】
(1)先確定函數(shù)定義域,再求導可得,分情況進行討論,根據(jù)函數(shù)的單調性,由存在最大值,且,解出實數(shù)的取值范圍;(2)將代入函數(shù),對函數(shù)進行化簡整理,可得,求導,利用導數(shù)分析函數(shù)單調性,進而得證.
(1)由于的定義域為,,
當時,在上為單調函數(shù),此時無最大值;
當時,由得,知在上單調遞增,在上單調遞減,故為的極大值點.
故,解得:.
綜上,當時,有最大值.
(2)當時,.
,由于,則,,
并且在上單調遞增,故存在唯一的,使得,
從而,當時,,即在上單調遞減;
當時,,即在上單調遞增.
故函數(shù)存在最小值,結合即,得
.
綜上得,對任意的,總存在最小值,且.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程為(其中t為參數(shù),).在以原點O為極點,x軸的非負半軸為極軸所建立的極坐標系中,曲線C的極坐標方程為.設直線l與曲線C相交于A,B兩點.
(1)求曲線C和直線l的直角坐標方程;
(2)已知點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】皮埃爾·德·費馬,法國律師和業(yè)余數(shù)學家,被譽為“業(yè)余數(shù)學家之王”,對數(shù)學界做出了重大貢獻,其中在1636年發(fā)現(xiàn)了:若是質數(shù),且互質,那么的次方除以的余數(shù)恒等于1,后來人們稱該定理為費馬小定理.依此定理若在數(shù)集中任取兩個數(shù),其中一個作為,另一個作為,則所取兩個數(shù)不符合費馬小定理的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級開設了豐富多彩的校本課程,現(xiàn)從甲、乙兩個班隨機抽取了5名學生校本課程的學分,統(tǒng)計如下表.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用分別表示甲、乙兩班抽取的5名學生學分的方差,計算兩個班學分的方差.得______,并由此可判斷成績更穩(wěn)定的班級是______班.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,過原點作射線交橢圓于,平行四邊形的頂點,在橢圓上.
(1)若射線的斜率為,求直線的斜率;
(2)求證:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在2019年新研發(fā)了一種設備,為測試其性能,從設備生產(chǎn)的流水線上隨機抽取30件零件作為樣本,測量其重量后,得到下表的相關數(shù)據(jù).為了評判某臺設備的性能,從該設備加工的零件中任意抽取一件,記其重量為,并根據(jù)以下不等式進行評判(表示相應事件的概率):①;②;評判規(guī)則為:若同時滿足上述兩個不等式,則設備等級為;僅滿足其中一個,則等級為;若全部不滿足,則等級為.
經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值.
重量/ | 18 | 19 | 21 | 22 | 23 | 24 | 26 | 28 | 29 | 30 |
件數(shù)/個 | 1 | 1 | 2 | 2 | 6 | 8 | 5 | 2 | 1 | 2 |
(1)試判斷設備的性能等級;
(2)若或的零件認為是次品,其余為非次品.設30個樣本中次品個數(shù)為,現(xiàn)需要從中取出全部次品和2件非次品形成個小樣本,該公司從該小樣本中機抽取2件零件,求取出的兩件零件中恰有一件是次品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系.xOy中,曲線C1的參數(shù)方程為( 為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)已知曲線C2的極坐標方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4,求α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了提高學生的身體素質,某校高一、高二兩個年級共336名學生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數(shù)據(jù)(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設某學生跳繩個/分鐘,踢毽個/分鐘.當,且時,稱該學生為“運動達人”.
①從高二年級的學生中任選一人,試估計該學生為“運動達人”的概率;
②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為“運動達人”的人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com