18.曲線x2+y2+2$\sqrt{2}$x-2$\sqrt{2}$y=0關(guān)于點(-$\sqrt{2}$,$\sqrt{2}$)中心對稱.

分析 化簡曲線方程為圓的標(biāo)準(zhǔn)方程,即可推出結(jié)果.

解答 解:曲線x2+y2+2$\sqrt{2}$x-2$\sqrt{2}$y=0化為:(x+$\sqrt{2}$)2+(y-$\sqrt{2}$)2=4.
可知曲線表示的是圓的方程,對稱中心($-\sqrt{2}$,$\sqrt{2}$).
故答案為:(-$\sqrt{2}$,$\sqrt{2}$).

點評 本題考查圓的方程的應(yīng)用,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓F:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$.其右焦點為F(c,0),第一象限的點A在橢圓T上,且AF⊥x軸.(I)若橢圓F過點(1,$-\frac{3}{2}$),求橢圓T的標(biāo)準(zhǔn)方程
(Ⅱ)已知直線l:y=x-c與橢圓T交于M、N兩點,且B(4c,yB)為直線l上的點.證明:直線AM,AB、AN的斜率滿足kAB一kAM=kAN-kAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.解方程cos(x+$\frac{π}{4}$)=$\frac{1}{2}$,x∈(0,2π),x=$\frac{π}{12}$或$\frac{17π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)y=tan($\frac{π}{3}$x+$\frac{π}{6}$)+2的定義域、周期和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.(x-2y)(x+y)5的展開式中x3y3的系數(shù)為(  )
A.-10B.-20C.30D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平面直角坐標(biāo)系xOy中,點P為橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的下頂點,M,N在橢圓上,若四邊形OPMN為平行四邊形,α為直線ON的傾斜角,若α∈($\frac{π}{6}$,$\frac{π}{4}$],則橢圓C的離心率的取值范圍為( 。
A.(0,$\frac{\sqrt{6}}{3}$]B.(0,$\frac{\sqrt{3}}{2}$]C.[$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{2}$]D.[$\frac{\sqrt{6}}{3}$,$\frac{2\sqrt{2}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,A、B、C所對的邊分別是a、b、c,且滿足下列關(guān)系:sin2B≤sin2A+sin2C-sinAsinC.
(1)求證:0<B$≤\frac{π}{3}$.
(2)求函數(shù)y=$\frac{1+sin2B}{sinB+cosB}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=ax+b(a>0,且a≠1,a,b均為常數(shù))在[0,1]上的取值區(qū)間為[1,3],則a+b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.(題類A)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過焦點F1的弦AB長為m(A,B在同一支上),另一個焦點為F2,則△ABF2的周長為(  )
A.4a-2mB.4aC.4a+mD.4a+2m

查看答案和解析>>

同步練習(xí)冊答案