【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和圖象的對稱軸方程.
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.
(3)求函數(shù)y=f(x)在區(qū)間 上的最小值,并求使y=f(x)取得最小值時的x的值.
【答案】
(1)解:函數(shù)
化簡可得:f(x)= cos2x﹣sinxcosx﹣
= ( cos2x)﹣ sin2x﹣
= cos2x﹣ sin2x﹣
=cos(2x+ )- ,
∴函數(shù)f(x)的最小正周期T= ,
由2x+ =kπ,(k∈Z),
可得:x= ,(k∈Z),
∴圖象的對稱軸方程為x= ,(k∈Z)
(2)解:由 ,(k∈Z),
可得
∴增區(qū)間為
(3)解:當x∈ 上時,
可得: ∈[ , ],
當2x+ =π時,f(x)取得最小值為﹣1﹣ ;
此時解得x=
∴當 時,最小值為
【解析】(1)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Acos(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,對稱軸方程,(2)將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;(2)x∈ 上時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最小值,即得到x)的取值.
【考點精析】解答此題的關鍵在于理解正弦函數(shù)的單調(diào)性的相關知識,掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣e﹣x+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,則實數(shù)a的取值范圍是( )
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)當x∈[0, ]時,求f(x)的最大值、最小值以及取得最值時的x值;
(2)設g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0 時,有 .
(1)求證:f(x)在[﹣1,1]上為增函數(shù);
(2)求不等式 的解集;
(3)若 對所有 恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ADEF與梯形ABCD所在的閏面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M為CE的中點.
(1)求證:BM∥平面ADEF;
(2)求平面BEC與平面ADEF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在( ﹣ )n的展開式中,第6項為常數(shù)項.
(1)求n;
(2)求含x2項的系數(shù);
(3)求展開式中所有的有理項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年年底,某商業(yè)集團根據(jù)相關評分標準,對所屬20家商業(yè)連鎖店進行了年度考核評估,并依據(jù)考核評估得分(最低分60分,最高分100分)將這些連鎖店分別評定為A,B,C,D四個類型,其考核評估標準如下表:
評估得分 | [60,70) | [70,80) | [80,90) | [90,100] |
評分類型 | D | C | B | A |
考核評估后,對各連鎖店的評估分數(shù)進行統(tǒng)計分析,得其頻率分布直方圖如下:
(Ⅰ)評分類型為A的商業(yè)連鎖店有多少家;
(Ⅱ)現(xiàn)從評分類型為A,D的所有商業(yè)連鎖店中隨機抽取兩家做分析,求這兩家來自同一評分類型的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com