9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn=-n2+4n,則其公差d=-2.

分析 由Sn=-n2+4n,可得a1=S1=3,a1+a2=4,分別解得a1,a2.即可得出.

解答 解:∵Sn=-n2+4n,
∴a1=S1=3,a1+a2=-22+8,
解得a1=3,a2=1.
∴公差d=a2-a1=-2.
故答案為:-2.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,集合A={x|x2≥6x},B={x|2x2-x-1>0,x∈Z},則(∁UA)∩B(  )
A.[1,6]B.(1,6)C.{1,2,3,4}D.{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x≤y}\\{x+y≤1}\end{array}\right.$,則z=2x+y-$\frac{1}{2}$的最大值是( 。
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{{S}_{2016}}{2016}$-S1=2015,則數(shù)列{an}的公差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)P是橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}$=1上的動(dòng)點(diǎn),則P到直線$\frac{x}{4}+\frac{y}{3}$=1的距離的最小值是(  )
A.$\frac{{\sqrt{21}-12}}{5}$B.$\frac{{12-\sqrt{21}}}{5}$C.$\frac{{2\sqrt{21}-12}}{5}$D.$\frac{{12-2\sqrt{21}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)z=i(1-2i)(i為虛數(shù)單位),則$\overline{z}$=(  )
A.1-2iB.1+2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=ex-$\frac{ax}{x+1}$(x>-1).
(1)當(dāng)a=1時(shí),討論f(x)的單調(diào)性;
(2)當(dāng)a>0時(shí),設(shè)f(x)在x=x0處取得最小值,求證:f(x0)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,平面PCD⊥底面ABCD,PD⊥CD,PD=CD,E為PC的中點(diǎn).
(I)求證:AC⊥PB;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,邊長為4的正方形ABED的對邊AB、ED的中點(diǎn)為C、F,將此正方形沿著CF折成120°的二面角,連AB、DE得一直三棱柱,則此三棱柱外接球的表面積等于( 。
A.16πB.32πC.D.64π

查看答案和解析>>

同步練習(xí)冊答案