從4男3女志愿者中,選1女2男分別到A,B,C地執(zhí)行任務,則不同的選派方法( 。
A、36種B、108種
C、210種D、72種
考點:計數(shù)原理的應用
專題:應用題,排列組合
分析:先選后排,利用組合、排列知識,即可得出結論.
解答: 解:從4男3女志愿者中,選1女2男,有
C
1
3
C
2
4
=18種方法,
分別到A,B,C地執(zhí)行任務,有
A
3
3
=6種方法,
根據(jù)乘法原理,可得不同的選派方法有18×6=108種,
故選:B.
點評:本題考查組合、排列知識,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若sin(α+π)=-
3
5
,且α∈Ⅱ,tan(θ+
3
2
π
)=-2,且θ∈Ⅲ,求sin(α-θ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人做出拳游戲(錘子、剪刀、布),錘子記為“⊥”,剪刀記為“×”,布記為“□”求:
(1)平局的概率;
(2)甲贏的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單調遞減的等比數(shù)列{an}滿足:a2+a3+a4=
26
27
,且a3+
4
27
是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前n項和為Sn,求滿足不等式
Sn-m
Sn+1-m
3m
3m+1
成立的所有正整數(shù)m,n組成的有序實數(shù)對(m,n).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校為調查學生喜歡“應用統(tǒng)計”課程是否與性別有關,隨機抽取了選修課程的55名學生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計課程不喜歡統(tǒng)計課程
男生205
女生1020
(1)判斷是否有99.5%的把握認為喜歡“應用統(tǒng)計”課程與性別有關?
(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學生中抽取6名學生作進一步調查,將這6名學生作為一個樣本,從中任選2人,求恰有1個男生和1個女生的概率.
P(K2≥k)0.100.050.250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
臨界值參考:
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校有男老師45名,女老師15名,按照分層抽樣的方法組建了一個4人的學科攻關小組.
(1)求某老師被抽到的概率及學科攻關小組中男、女老師的人數(shù);
(2)經過一個月的學習、討論,這個學科攻關小組決定選出2名老師做某項實驗,方法是先從小組里選出1名老師做實驗,該老師做完后,再從小組內剩下的老師中選1名做實驗,求選出的2名老師中恰有1名女老師的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:x2=2py(p>0)的焦點為F,過F的直線l交拋物線C于點A,B,當直線l的傾斜角是45°時,AB的中垂線交y軸于點Q(0,5).
(1)求p的值;
(2)以AB為直徑的圓交x軸于點M,N,記劣弧
MN
的長度為S,當直線l繞F旋轉時,求
S
|AB|
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=1,a2=3,前n項和為Sn,且
Sn+1-Sn
Sn-Sn-1
=
2an+1
an
,(n≥2,n∈N),設b1=1,bn+1=log2(an+1)+bn
(Ⅰ)判斷數(shù)量{an+1}是否為等比數(shù)列,并證明你的結論;
(Ⅱ)設Cn=
4
bn+1-1
n+1
anan+1
,證明
n
k=1
C
k
<1
;
(Ⅲ)對于(Ⅰ)中數(shù)列{an},若數(shù)列{ln}滿足ln=log2(an+1)(n∈N),在每兩個lk與lk+1之間都插入2k-1(k=1,2,3,…,k∈N)個2,使得數(shù)列{ln}變成了一個新的數(shù)列{tp},(p∈N)試問:是否存在正整數(shù)m,使得數(shù)列{tp}的前m項的和Tm=2011?如果存在,求出m的值;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案