分析 (1)通過討論x的范圍求出不等式的解集即可;(2)通過討論a的范圍,求出滿足條件的a的值即可.
解答 解:(1)由題知:|x-2|+|x-2|≥4,
∴|x-2|≥2,∴x-2≥2或x-2≤-2,
故不等式的解集為{x|x≤0或x≥4}.
(2)由題意知$\left\{\begin{array}{l}f(0)≥4\\ f(4)≥4\end{array}\right.$,代入得$\left\{\begin{array}{l}2+|a|≥4\\ 2+|{4-a}|≥4\end{array}\right.$,
解得a≤-2或a=2或a≥6,又|x-2|+|x-a|≥|2-a|.
①當a≤-2時,|2-a|≥4,所以f(x)≥4恒成立,
f(x)<4解集為空集,不合題意;
②當a=2時,由(1)可知解集為(0,4),符合題意;
③當a≥2時,|2-a|≥4,所以f(x)≥4恒成立,
f(x)<4解集為空集,不合題意;
綜上所述,當a=2時,不等式f(x)<4的解集中的整數(shù)有且僅有1,2,3.
點評 本題考查了絕對值不等式的解法,考查分類討論思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | B?C?A | B. | B?A?C | C. | D?(A∩C) | D. | C∩D=B |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 3 | C. | 4 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2)∪[4,+∞) | B. | (-∞,-4]∪[2,+∞) | C. | (-2,4) | D. | (-4,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “八卦曲線”C一定是函數(shù) | |
B. | “八卦曲線”C的圖象一定關于直線x=2成軸對稱 | |
C. | “八卦曲線”C的圖象一定關于點(2,2)成中心對稱 | |
D. | “八卦曲線”C的方程為y=2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>2 | B. | 2≤a<3 | C. | 2≤a≤3 | D. | 2<a≤3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 288 | B. | 144 | C. | 72 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com