分析 將每一個條件作為已知條件進(jìn)行分析證明,得出結(jié)論.
解答 解:①因為AC⊥α,且EF?α,所以AC⊥EF.
又AB⊥α且EF?α,所以EF⊥AB.
因為AC∩AB=A,AC?平面ACBD,AB?平面ACBD,所以EF⊥平面ACBD,
因為BD?平面ACBD,所以BD⊥EF.
所以①可以成為增加的條件.
②AC與α,β所成的角相等,AC與EF 不一定,可以是相交、可以是平行、也可能垂直,所以EF與平面ACDB不垂直,所以就推不出EF與BD垂直.
所以②不可以成為增加的條件.
③AC與CD在β內(nèi)的射影在同一條直線上
因為CD⊥α且EF?α所以EF⊥CD.
所以EF與CD在β內(nèi)的射影垂直,
AC與CD在β內(nèi)的射影在同一條直線上
所以EF⊥AC,
因為AC∩CD=C,AC?平面ACBD,CD?平面ACBD,所以EF⊥平面ACBD,
因為BD?平面ACBD所以BD⊥EF.
所以③可以成為增加的條件.
④若AC∥EF,則AC∥平面α,所以BD∥AC,所以BD∥EF.
所以④不可以成為增加的條件.
故答案為:①③.
點評 本題考查空間中直線與平面的位置關(guān)系,解題的關(guān)鍵是利用線面垂直的判定和性質(zhì)來說清楚題目的對錯,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 2π | C. | π | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-$\frac{1}{e}$ | B. | 2-$\frac{2}{e}$ | C. | $\frac{2}{e}$-1 | D. | 1+2e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 504 | B. | 1008 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不比必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com