17.函數(shù)f(x)=cos(x-$\frac{π}{6}$)cos(x+$\frac{π}{3}$)的最小正周期為( 。
A.B.C.πD.$\frac{π}{2}$

分析 觀察得到:函數(shù)解析式中兩角x+$\frac{π}{3}$與x-$\frac{π}{6}$之差為$\frac{π}{2}$,把x+$\frac{π}{3}$變?yōu)椋▁-$\frac{π}{6}$)+$\frac{π}{2}$,利用誘導(dǎo)公式化簡后,再根據(jù)二倍角的正弦函數(shù)公式把函數(shù)化為一個角的正弦函數(shù),找出ω的值,代入周期公式即可求出函數(shù)的最小正周期.

解答 解:∵f(x)=cos(x-$\frac{π}{6}$)cos(x+$\frac{π}{3}$)
=cos(x-$\frac{π}{6}$)cos[(x-$\frac{π}{6}$)+$\frac{π}{2}$]
=-cos(x-$\frac{π}{6}$)sin(x-$\frac{π}{6}$)
=-$\frac{1}{2}$sin(2x-$\frac{π}{3}$).
∴最小正周期T=$\frac{2π}{2}$=π.
故選:C.

點(diǎn)評 此題考查了三角函數(shù)的周期及其求法,要求學(xué)生熟練掌握三角函數(shù)的周期公式,其中利用三角函數(shù)的恒等變換把函數(shù)解析式化為一個角的三角函數(shù)是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知log${\;}_{\frac{1}{2}}}$a<log${\;}_{\frac{1}{2}}}$b,則下列不等式一定成立的是( 。
A.ln(a-b)>0B.$\frac{1}{a}>\frac{1}$C.${(\frac{1}{4})^a}<{(\frac{1}{3})^b}$D.3a-b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}滿足a1=1,且對于任意n∈N*都有an+1=an+n+1,則$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{1001}}$=$\frac{1001}{501}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{|x|-a}$(a>0,b>0),因其圖象類似于漢字“囧”字,被稱為“囧函數(shù)”,我們把函數(shù)f(x)的圖象與y軸的交點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)稱為函數(shù)f(x)的“囧點(diǎn)”,以函數(shù)f(x)的“囧點(diǎn)”為圓心,與函數(shù)f(x)的圖象有公共點(diǎn)的圓,皆稱函數(shù)f(x)的“囧圓”,則當(dāng)a=b=1時,有下列命題:
①對任意x∈(0,+∞),都有f(x)>$\frac{1}{x}$成立;
②存在x0∈($\frac{π}{6}$,$\frac{π}{3}$),使f(x0)<tanx0成立;
③函數(shù)f(x)的“囧點(diǎn)”與函數(shù)y=lnx圖象上的點(diǎn)的最短距離是$\sqrt{2}$;
④函數(shù)f(x)的所有“囧圓”中,其周長的最小值為2$\sqrt{3}$π.
其中的正確命題有②③④(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.(x-$\frac{2}{x}$)10的展開式中,常數(shù)項等于-8064.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)Sn,Tn分別是等差數(shù)列{an}、{bn}的前n項和,對n∈N*均有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{4n+k}$,若已知$\frac{{a}_{5}}{_{5}}$=$\frac{8}{9}$,則k=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F作斜率為-1的直線,且l與此雙曲線的兩條漸近線的交點(diǎn)分別為B,C,若$\overrightarrow{FB}$=$\frac{1}{3}$$\overrightarrow{BC}$,則此雙曲線的離心率為( 。
A.$\frac{\sqrt{34}}{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{34}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.Sn是等差數(shù)列{an}的前n項和,若$\frac{{S}_{n}}{{S}_{2n}}=\frac{n+1}{4n+2}$,則$\frac{{a}_{3}}{{a}_{5}}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.α,β是兩平面,AB,CD是兩條線段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一個條件,就能得出BD⊥EF,現(xiàn)有下列條件:①AC⊥β;②AC與α,β所成的角相等;③AC與CD在β內(nèi)的射影在同一條直線上;④AC∥EF.其中能成為增加條件的序號是①或③.

查看答案和解析>>

同步練習(xí)冊答案