分析 由題意和正弦定理可得$\frac{c}$=2cosB,由銳角三角形可得B的范圍,由余弦函數值域和不等式可得.
解答 解:∵在銳角△ABC中C=2B,∴由正弦定理可得:
$\frac{c}$=$\frac{sinC}{sinB}$=$\frac{sin2B}{sinB}$=$\frac{2sinBcosB}{sinB}$=2cosB,
∵A+B+C=π,∴A+3B=π,即A=π-3B,
由銳角三角形可得0<π-3B<$\frac{π}{2}$且0<2B<$\frac{π}{2}$,
解得$\frac{π}{6}$<B<$\frac{π}{4}$,故$\frac{\sqrt{2}}{2}$<cosB<$\frac{\sqrt{3}}{2}$,
∴$\sqrt{2}$<2cosB<$\sqrt{3}$,
故答案為:($\sqrt{2}$,$\sqrt{3}$).
點評 本題考查正余弦定理解三角形,由已知三角形得出B的范圍是解決問題的關鍵,屬基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{34}}{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{34}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{15}$ | B. | $\frac{5}{3}$ | C. | 15 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 所有對數函數都不是單調函數 | B. | 所有的單調函數都不是對數函數 | ||
C. | 存在一個對數函數不是單調函數 | D. | 存在一個單調函數都不是對數函數 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com