精英家教網 > 高中數學 > 題目詳情
14.在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若C=2B,則$\frac{c}$是取值范圍為($\sqrt{2}$,$\sqrt{3}$).

分析 由題意和正弦定理可得$\frac{c}$=2cosB,由銳角三角形可得B的范圍,由余弦函數值域和不等式可得.

解答 解:∵在銳角△ABC中C=2B,∴由正弦定理可得:
$\frac{c}$=$\frac{sinC}{sinB}$=$\frac{sin2B}{sinB}$=$\frac{2sinBcosB}{sinB}$=2cosB,
∵A+B+C=π,∴A+3B=π,即A=π-3B,
由銳角三角形可得0<π-3B<$\frac{π}{2}$且0<2B<$\frac{π}{2}$,
解得$\frac{π}{6}$<B<$\frac{π}{4}$,故$\frac{\sqrt{2}}{2}$<cosB<$\frac{\sqrt{3}}{2}$,
∴$\sqrt{2}$<2cosB<$\sqrt{3}$,
故答案為:($\sqrt{2}$,$\sqrt{3}$).

點評 本題考查正余弦定理解三角形,由已知三角形得出B的范圍是解決問題的關鍵,屬基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

8.已知數列{an}滿足a1=1,且對于任意n∈N*都有an+1=an+n+1,則$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{1001}}$=$\frac{1001}{501}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作斜率為-1的直線,且l與此雙曲線的兩條漸近線的交點分別為B,C,若$\overrightarrow{FB}$=$\frac{1}{3}$$\overrightarrow{BC}$,則此雙曲線的離心率為( 。
A.$\frac{\sqrt{34}}{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{34}}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.Sn是等差數列{an}的前n項和,若$\frac{{S}_{n}}{{S}_{2n}}=\frac{n+1}{4n+2}$,則$\frac{{a}_{3}}{{a}_{5}}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.定義D上函數f(x)滿足:如果對任意x1,x2∈D,都有f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{1}{2}$[f(x1)+f(x2)],則稱f(x)是D上的凸函數.
(1)判斷函數y=$\sqrt{x}$是否為凸函數?為什么?
(2)若函數f(x)=logax在(0,+∞)上是凸函數,求a的取值范圍;
(3)在(2)的條件下,當x∈(0,1]時,不等式f(mx2+x)≤0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.已知向量$\overrightarrow a$是單位向量,向量$\overrightarrow b=({2,2\sqrt{3}})$,若$\overrightarrow a⊥({2\overrightarrow a+\overrightarrow b})$,則$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知函數f(x=$\left\{\begin{array}{l}{f(x+2),x<2}\\{(\frac{1}{3})^{x},x≥2}\end{array}\right.$,f(-1+log35)的值為( 。
A.$\frac{1}{15}$B.$\frac{5}{3}$C.15D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.α,β是兩平面,AB,CD是兩條線段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一個條件,就能得出BD⊥EF,現有下列條件:①AC⊥β;②AC與α,β所成的角相等;③AC與CD在β內的射影在同一條直線上;④AC∥EF.其中能成為增加條件的序號是①或③.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.若命題P:所有的對數函數都是單調函數,則¬P為( 。
A.所有對數函數都不是單調函數B.所有的單調函數都不是對數函數
C.存在一個對數函數不是單調函數D.存在一個單調函數都不是對數函數

查看答案和解析>>

同步練習冊答案