A. | (0,2) | B. | (0,1)∪(2,+∞) | C. | (-∞,0)∪(0,2) | D. | (-∞,0)∪(2,+∞) |
分析 通過討論x的范圍,求出f(x)的單調(diào)性,根據(jù)f(x)=f(2-x),求出f(x)的對稱性,從而求出不等式的解集即可.
解答 解:∵(x-1)f′(x)>0,
∴當x>1時,f′(x)>0,此時函數(shù)f(x)單調(diào)遞增,
當x<1時,f′(x)<0,此時函數(shù)f(x)單調(diào)遞減,
又f(x)=f(2-x),∴f(x+1)=f(1-x),對稱軸x=1,
而f(2)=0,
∴x∈(-∞,0),f(x)>0,
x∈(0,2),f(x)<0,
x∈(2,+∞),f(x)>0,
x•f(x)<0的解集是(-∞,0)∪(0,2),
故選:C.
點評 本題考查了函數(shù)的單調(diào)性、對稱性,考查不等式問題,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 150 | B. | 200 | C. | 250 | D. | 300 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 線性回歸模型y=bx+a+e是一次函數(shù) | |
B. | 在線性回歸模型y=bx+a+e中,因變量y是由自變量x唯一確定的 | |
C. | 在殘差圖中,殘差點比較均勻地落在水平帶狀區(qū)域中,說明選用的模型比較合適 | |
D. | 用R2=1-$\frac{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-{\widehat{y}}_{i})^{2}}{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-\overline{y})^{2}}$來刻畫回歸方程,R2越小,擬合的效果越好 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com