2.直線l1的傾斜角的余弦為-$\frac{1}{2}$,直線l2的傾斜角的正切值為$\frac{1}{\sqrt{3}}$,則l1與l2的關(guān)系是垂直.

分析 求出兩條直線的傾斜角,然后判斷兩條直線的位置關(guān)系.

解答 解:直線l1的傾斜角的余弦為-$\frac{1}{2}$,傾斜角為:$\frac{2π}{3}$;
直線l2的傾斜角的正切值為$\frac{1}{\sqrt{3}}$,傾斜角為:$\frac{π}{6}$;
傾斜角的差為:$\frac{2π}{3}-\frac{π}{6}$=$\frac{π}{2}$.
則l1與l2的關(guān)系是垂直關(guān)系.
故答案為:垂直.

點評 本題考查兩條直線的位置關(guān)系的判斷,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,AB是⊙O的直徑,點C在⊙O上,CD為⊙O的切線,過A作CD的垂線,垂足為D,交⊙O于F.
(1)求證:AC為∠DAB的角平分線;
(2)過C作AB的垂線,垂足為M,若⊙O的直徑為8,且OM:MB=3:1,求DF•AD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進行解答.選情況如下表:(單位:人)
幾何題代數(shù)題總計
男同學(xué)30830
女同學(xué)81220
總計302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,女生甲每次解答一道幾何題所用的時間在5---7分鐘,女生乙每次解答一道幾何題所用的時間在6-8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
附表及公式
P(k2≥k)0.150.100.050.0250.0100,0050.001
k2.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若a>b,c>d,則一定有(  )
A.a-c>b-dB.a+c>b+dC.ac>bdD.a+d>b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,已知圓的直徑AB=13,C為圓上一點,過C作CD⊥AB于點D(AD>BD),若CD=6,則AD的長為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,且經(jīng)過點A(2,0).
(I)求橢圓的方程;
(Ⅱ)設(shè)直線l經(jīng)過點(1,0)與橢圓交于B、C(不與A重合)兩點,
(i)若△ABC的面積為$\frac{\sqrt{13}}{4}$,求直線l的方程;
(ii)若AB與AC的斜率之和為3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x+1|-|x-2|.
(1)若不等式f(x)≤a的解集為(-∞,1),求a的值;
(2)若g(x)=$\frac{1}{f(x)+m}$的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,△ABC各邊長均為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.

(1)證明:平面ADF⊥平面BCD;
(2)求三棱錐C-DEF的體積;
(3)在線段BC上是否存在一點P,使AP⊥DE?如果存在,求出$\frac{BP}{BC}$的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在直角坐標(biāo)系xOy中,曲線C1的方程為x2+y2=2,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2-t}\\{y=t}\end{array}\right.$(t為參數(shù)).以原點O為極點,x軸非負半軸為極軸,建立極坐標(biāo)系,則曲線C1與C2的交點的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$).

查看答案和解析>>

同步練習(xí)冊答案