11.在△ABC中,A:B=1:2,sinC=1,則a:b:c=(  )
A.1:2:3B.3:2:1C.2:$\sqrt{3}$:1D.1:$\sqrt{3}$:2

分析 求出C,利用A:B=1:2,求出A,B,然后利用正弦定理推出結(jié)果即可.

解答 解:在△ABC中,A:B=1:2,sinC=1,
可得A=30°,B=60°,C=90°.
a:b:c=sinA:sinB:sinC=$\frac{1}{2}:\frac{\sqrt{3}}{2}:1$=1:$\sqrt{3}$:2.
故選:D.

點(diǎn)評(píng) 本題考查正弦定理以及三角形的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)$f(x)={log_3}x-{(\frac{1}{2})^x}$,若實(shí)數(shù)x0是函數(shù)f(x)的零點(diǎn),且0<x1<x0,則f(x1)的值為( 。
A.恒為正B.等于零C.恒為負(fù)D.不小于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某工廠平均每天生產(chǎn)某種機(jī)器零件大約10000件,要求產(chǎn)品檢驗(yàn)員每天抽取50件零件,檢查其質(zhì)量狀況,采用系統(tǒng)抽樣方法抽取,若抽取的第一組中的號(hào)碼為0010,則第三組抽取的號(hào)碼為0410.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)P是橢圓$\frac{x^2}{4}+\frac{y^2}{9}=1$上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( 。
A.4B.8C.6D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{lnx+k}{ex}$(k為常數(shù),e為自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1)) 處的切線與x軸平行.
(1)求k的值,并求f (x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=xf′(x),其中f′(x)為f(x)的導(dǎo)函數(shù),證明:對(duì)任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2.點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),若|AB|=$\frac{32}{5}$,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知不等式組$\left\{\begin{array}{l}{x+y-2\sqrt{2}≥0}\\{x≤2\sqrt{2}}\\{y≤2\sqrt{2}}\end{array}\right.$表示平面區(qū)域Ω,過(guò)區(qū)域Ω中的任意一個(gè)點(diǎn)P,作圓x2+y2=1的兩條切線且切點(diǎn)分別為A,B,當(dāng)△PAB的面積最小時(shí),cos∠APB的值為( 。
A.$\frac{7}{8}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某企業(yè)有4個(gè)分廠,新培訓(xùn)了一批6名技術(shù)人員,將這6名技術(shù)人員分配到各分廠,要求每個(gè)分廠至少1人,則不同的分配方案種數(shù)為( 。
A.1080B.480C.1560D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)z=(-2+i)i,則復(fù)數(shù)z的共軛復(fù)數(shù)是( 。
A.-2+iB.-2-iC.-1+2iD.-1-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案