2.某單位N名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.下面是年齡的分布表:
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50)
人數(shù)28ab
(Ⅰ)求正整數(shù)a,b,N的值;
(Ⅱ)現(xiàn)要從年齡低于40歲的員工用分層抽樣的方法抽取42人,則年齡在第1,2,3組得員工人數(shù)分別是多少?
(Ⅲ)為了估計該單位員工的閱讀傾向,現(xiàn)對該單位所有員工中按性別比例抽查的40人是否喜歡閱讀國學(xué)類書籍進(jìn)行了調(diào)查,調(diào)查結(jié)果如下所示:(單位:人)
喜歡閱讀國學(xué)類 不喜歡閱讀國學(xué)類 合計
 男 14 4 18
 女 8 14 22
 合計 22 18 40
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認(rèn)為該位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

分析 (Ⅰ)根據(jù)頻率、頻數(shù)與樣本容量的關(guān)系求出a、b、N的值;
(Ⅱ)利用分層抽樣原理計算各組應(yīng)抽取的人數(shù);
(Ⅲ)根據(jù)列聯(lián)表計算K2的觀測值,查表得出結(jié)論.

解答 解:(Ⅰ)總?cè)藬?shù)為:$N=\frac{28}{5×0.02}=280$,
且a=280×0.02×5=28,
第3組的頻率是:1-5×(0.02+0.02+0.06+0.02)=0.4,
所以b=280×0.4=112;…(4分)
(Ⅱ)因為年齡低于40歲的員工在第1,2,3組,
共有28+28+112=168(人),
利用分層抽樣在168人中抽取42人,每組抽取的人數(shù)分別為:
第1組抽取的人數(shù)為$28×\frac{42}{168}=7$(人),
第2組抽取的人數(shù)為$28×\frac{42}{168}=7$(人),
第3組抽取的人數(shù)為$112×\frac{42}{168}=28$(人),
所以第1,2,3組分別抽7人、7人、28人.…(8分)
(Ⅲ)假設(shè)H0:“是否喜歡看國學(xué)類書籍和性別無關(guān)系”,根據(jù)表中數(shù)據(jù),
求得K2的觀測值$k=\frac{{40×{{(14×14-4×8)}^2}}}{22×18×22×18}≈6.8605>6.635$,
查表得P(K2≥6.635)=0.01,
所以有99%的把握認(rèn)為該單位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系.…(12分)

點評 本題考查了頻率分布直方圖與獨立性檢驗的應(yīng)用問題,是綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是一個算法流程圖,則輸出的n的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^{\frac{1}{3}}}}\\{{{10}^x}}\end{array}}\right.,\begin{array}{l}{x<0}\\{x≥0}\end{array}$,則f(-8)+f(lg4)=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點A是曲線ρ=2cosθ上任意一點,則點A到直線ρsin(θ+$\frac{π}{6}$)=4的距離的最小值是(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)g(x)=-$\frac{1}{x}$的圖象關(guān)于點A(-$\frac{1}{2}$,$\frac{1}{2}$)的對稱圖象為函數(shù)y=f(x)的圖象.
(1)求y=f(x);
(2)用函數(shù)單調(diào)性的定義證明y=f(x)在(一1,+∞)上為單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(m2+m+1)+(m2+m-4)i=3-2i,(m∈R)⇒m=1是z1=z2的  充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=x+lnx的零點所在的區(qū)間是( 。
A.(0,$\frac{1}{e}$)B.(0,1)C.(1,2)D.(1,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.高一某班有學(xué)生56人,現(xiàn)將所有同學(xué)隨機(jī)編號,用系統(tǒng)抽樣的方法,抽取一個容量為4的樣本,已知6號、34號、48號學(xué)生在樣本中,則樣本中還有一個學(xué)生的編號為( 。
A.18B.20C.21D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4≤0}\\{x-1≥0}\end{array}\right.$,則$\frac{xy}{2{x}^{2}+{y}^{2}}$的取值范圍是(  )
A.[$\frac{3}{11}$,$\frac{1}{3}$]B.[$\frac{3}{11}$,$\frac{\sqrt{2}}{4}$]C.[$\frac{1}{3}$,$\frac{\sqrt{2}}{4}$]D.[3,$\frac{11}{3}$]

查看答案和解析>>

同步練習(xí)冊答案