15.($\root{3}{x}$-$\frac{1}{{\root{3}{x}}}$)10的展開式中有理項且系數(shù)為正數(shù)的項有2項.

分析 利用二項式定理的通項公式及其有理項的定義即可得出.

解答 解:($\root{3}{x}$-$\frac{1}{{\root{3}{x}}}$)10的展開式中通項公式:Tr+1=${∁}_{10}^{r}$$(\root{3}{x})^{10-r}$$(-\frac{1}{\root{3}{x}})^{r}$=(-1)r${∁}_{10}^{r}$${x}^{\frac{10-2r}{3}}$.(r=0,1,2,…,10).
由題意可得:r為偶數(shù),且$\frac{10-2r}{3}$為整數(shù),因此r=2,8.
有理項且系數(shù)為正數(shù)的項有2項.
故答案為:2.

點評 本題考查了二項式定理的通項公式,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.2016年7月23日至24日,本年度第三次二十國集團(G20)財長和央行行長會議在四川省省會成都舉行,業(yè)內調查機構i Research (艾瑞咨詢)在成都市對[25,55]歲的人群中隨機抽取n人進行了一次“消費”生活習慣是否符合理財觀念的調查,若消費習慣符合理財觀念的稱為“經(jīng)紀人”,否則則稱為“非經(jīng)紀人”.則如表統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖
組數(shù)分組經(jīng)紀人的人數(shù)占本組
的頻率
第一組[25,30)1200.6
第二組[30,35)195P
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)300.3
第六組[50,55]150.3
(Ⅰ)補全頻率分布直方圖并求n,a,p的值;
(Ⅱ)根據(jù)頻率分布直方圖估計眾數(shù)、中位數(shù)和平均數(shù)(結果保留三位有效數(shù)字);
(Ⅲ)從年齡在[40,55]的三組“經(jīng)紀人”中采用分層抽樣法抽取7人站成一排照相,相同年齡段的人必須站在一起,則有多少種不同的站法?請用數(shù)字作答.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設f(x)為定義在R上的奇函數(shù),當x>0時,f(x)=log3(1+x),則f(-2)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{3}{2}$an-$\frac{3}{2}$,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項an和bn
(2)設cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知y=f(x)為奇函數(shù),當x>0時f(x)=x(1-x),則當x≤0時,則f(x)=x(1+x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=(${\frac{1}{a}}$)|x-2|,若f(0)=$\frac{1}{4}$,則函數(shù)f(x)的單調遞減區(qū)間是( 。
A.[2,+∞)B.(-∞,2]C.[-2,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,內角A,B,C的對邊分別為a,b,c,已知a=bcosC+csinB,b=2,則△ABC面積的最大值為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.某班學生一次數(shù)學考試成績頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為[70,90),[90,110),[110,130),[130,150],若成績大于等于90分的人數(shù)為36,則成績在[110,130)的人數(shù)為( 。
A.12B.9C.15D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.解不等式($\frac{1}{2}$)${\;}^{{x}^{2}-2x+3}$<($\frac{1}{2}$)${\;}^{2{x}^{2}+3x-3}$.

查看答案和解析>>

同步練習冊答案